IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v8y2012i1n9.html
   My bibliography  Save this article

A Markov Model of Football: Using Stochastic Processes to Model a Football Drive

Author

Listed:
  • Goldner Keith

    (Northwestern University)

Abstract

A team is backed into a 4th-and-26 from their own 25, down 3 points. What are the odds that drive ends in a field goal? In the 2003 playoffs, Donovan McNabb and the Eagles scoffed at such a probability as they converted and ultimately kicked a field goal to send the game into overtime. This study creates a mathematical model of a football drive that can calculate such probabilities, labeling down, distance, and yard line into states in an absorbing Markov chain. The Markov model provides a basic framework for evaluating play in football. With all the details of the model—absorption probabilities, expected time until absorption, expected points—we gain a much greater situational understanding for in-game analysis.

Suggested Citation

  • Goldner Keith, 2012. "A Markov Model of Football: Using Stochastic Processes to Model a Football Drive," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-18, March.
  • Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:1:n:9
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/jqas.2012.8.issue-1/1559-0410.1400/1559-0410.1400.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newton Paul K & Aslam Kamran, 2009. "Monte Carlo Tennis: A Stochastic Markov Chain Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-44, July.
    2. Alamar Benjamin C, 2010. "Measuring Risk in NFL Playcalling," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heiny Erik L. & Heiny Robert Lowell, 2014. "Stochastic model of the 2012 PGA Tour season," Journal of Quantitative Analysis in Sports, De Gruyter, pages 1-13.
    2. Heiner Matthew & Fellingham Gilbert W. & Thomas Camille, 2014. "Skill importance in women’s soccer," Journal of Quantitative Analysis in Sports, De Gruyter, pages 1-16.
    3. Jarvandi Ali & Sarkani Shahram & Mazzuchi Thomas, 2013. "Modeling team compatibility factors using a semi-Markov decision process: a data-driven approach to player selection in soccer," Journal of Quantitative Analysis in Sports, De Gruyter, pages 347-366.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:8:y:2012:i:1:n:9. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.