IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Rule of Tangent for Win-By-Two Games

Listed author(s):
  • Noubary Reza D.

    (Bloomsburg University)

  • Coles Drue

    (Bloomsburg University)

Registered author(s):

    Our study of win-by-two tie games is motivated by a famous 2010 Wimbledon tennis match whose final set was decided by the improbable score of 70-68. We introduce a trigonometric interpretation of the odds of winning points and games in tennis when serving from deuce. We place this result in the more general setting of a gamblers ruin problem and also propose a performance measure to quantify the serving and receiving skill of one player relative to another. Then we extend the analysis to table tennis and volleyball. These latter games are similar to tennis in that the winner must obtain a certain minimum score while leading by two points, but they differ in their determination of which player serves a given rally and in whether a point is awarded to the receiver for winning a rally. We quantify the impact of these differences on the outcomes of games, assuming that the probability for a player to win a single point does not change during a game. We also apply a Markov chain analysis to arrive at our earlier results for tennis and to calculate the expected length of a game after reaching deuce. Finally, we develop the idea of equivalent games so that the analysis can be carried out using only the probability of winning a point (that is, without regard for the question of which player is serving).

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by De Gruyter in its journal Journal of Quantitative Analysis in Sports.

    Volume (Year): 7 (2011)
    Issue (Month): 4 (October)
    Pages: 1-18

    in new window

    Handle: RePEc:bpj:jqsprt:v:7:y:2011:i:4:n:8
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Klaassen F. J G M & Magnus J. R., 2001. "Are Points in Tennis Independent and Identically Distributed? Evidence From a Dynamic Binary Panel Data Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 500-509, June.
    2. Newton Paul K & Aslam Kamran, 2009. "Monte Carlo Tennis: A Stochastic Markov Chain Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-44, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:7:y:2011:i:4:n:8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.