IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v107y2023i4d10.1007_s10182-022-00465-5.html
   My bibliography  Save this article

Hedonic pricing modelling with unstructured predictors: an application to Italian Fashion Industry

Author

Listed:
  • Federico Crescenzi

    (Universita degli Studi della Tuscia)

Abstract

This study proposes a comparison of hedonic pricing models that use attributes obtained by featurizing text. We collected prices of items sold on the websites of five famous fashion producers in order to estimate hedonic pricing models that leverage the information contained in product descriptions. We mapped product descriptions to a high-dimensional feature space and compared predictive accuracy and variable selection properties of some statistical estimators that leverage sparse modelling, topic modelling and aggregated predictors, to test whether better predictive accuracy comes with an empirically consistent selection of attributes. We call this approach Hedonic Text-Regression modelling. Its novelty is that by using attributes obtained by text-mining of product descriptions, we obtain an estimate of the implicit price of the words contained therein. Empirically, all the proposed models outperformed the traditional hedonic pricing model in terms of predictive accuracy, while also providing consistent variable selection.

Suggested Citation

  • Federico Crescenzi, 2023. "Hedonic pricing modelling with unstructured predictors: an application to Italian Fashion Industry," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(4), pages 733-753, December.
  • Handle: RePEc:spr:alstar:v:107:y:2023:i:4:d:10.1007_s10182-022-00465-5
    DOI: 10.1007/s10182-022-00465-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-022-00465-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-022-00465-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Cavallo, 2017. "Are Online and Offline Prices Similar? Evidence from Large Multi-channel Retailers," American Economic Review, American Economic Association, vol. 107(1), pages 283-303, January.
    2. Alberto Cavallo, 2018. "Scraped Data and Sticky Prices," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 105-119, March.
    3. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    4. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    5. G Baltas & C Saridakis, 2010. "Measuring brand equity in the car market: a hedonic price analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 284-293, February.
    6. Gérard P. Cachon & Robert Swinney, 2011. "The Value of Fast Fashion: Quick Response, Enhanced Design, and Strategic Consumer Behavior," Management Science, INFORMS, vol. 57(4), pages 778-795, April.
    7. Adam Nowak & Patrick Smith, 2017. "Textual Analysis in Real Estate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 896-918, June.
    8. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    9. Cassel, Eric & Mendelsohn, Robert, 1985. "The choice of functional forms for hedonic price equations: Comment," Journal of Urban Economics, Elsevier, vol. 18(2), pages 135-142, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marzia Freo & Alessandra Luati, 2024. "Lasso-based variable selection methods in text regression: the case of short texts," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(1), pages 69-99, March.
    2. David Staines, 2023. "Stochastic Equilibrium the Lucas Critique and Keynesian Economics," Papers 2312.16214, arXiv.org, revised Jun 2024.
    3. Alberto Cavallo & Oleksiy Kryvtsov, 2024. "Price Discounts and Cheapflation during the Post-Pandemic Inflation Surge," NBER Chapters, in: Inflation in the COVID Era and Beyond, National Bureau of Economic Research, Inc.
    4. Benchimol, Jonathan & Palumbo, Luigi, 2024. "Sanctions and Russian online prices," Journal of Economic Behavior & Organization, Elsevier, vol. 225(C), pages 483-521.
    5. Alexey S. Evseev & Rodion R. Latypov & Egor A. Postolit & Elena S. Sinelnikova-Muryleva, 2022. "Техданные О Ценах Онлайн-Ритейлеров Обладают Огромной Ценностью С Точки Зрения Экономической Науки: Их Использование Позволяет Уточнять Прогнозы Инфляции И Предвосхищать Будущие Тенденции В Моменте, К," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 11, pages 36-45, November.
    6. Stéphane Dupraz, 2024. "A Kinked‐Demand Theory of Price Rigidity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(2-3), pages 325-363, March.
    7. Xulia González & Daniel Miles-Touya, 2018. "Price dispersion, chain heterogeneity, and search in online grocery markets," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 9(1), pages 115-139, March.
    8. Alexey S. Evseev & Rodion R. Latypov & Egor A. Postolit & Elena S. Sinelnikova-Muryleva, 2022. "Technical and Methodological Challenges of Collecting Price Data from Online Retailers [Технические И Методологические Проблемы Сбора Данных О Ценах Онлайн-Ритейлеров]," Russian Economic Development, Gaidar Institute for Economic Policy, issue 11, pages 36-45, November.
    9. Solórzano, Diego, 2024. "Grab a bite? Prices in the food away from home industry during the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 225(C), pages 435-464.
    10. Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
    11. Robert Laskowski, 2022. "Differences between Online Prices and the Consumer Prices Index During Covid-19 in Germany," ACTA VSFS, University of Finance and Administration, vol. 16(1), pages 76-87.
    12. Konstantin Bauman & Alexander Tuzhilin, 2022. "Know Thy Context: Parsing Contextual Information from User Reviews for Recommendation Purposes," Information Systems Research, INFORMS, vol. 33(1), pages 179-202, March.
    13. Aparicio, Diego & Rigobon, Roberto, 2023. "Quantum prices," Journal of International Economics, Elsevier, vol. 143(C).
    14. Li, Jiazheng & Wang, Tingwei & Su, Zhifang, 2024. "Optimal monetary policy under digital technology shock," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    15. Liqian Cai & Arnab Bhattacharjee & Roger Calantone & Taps Maiti, 2019. "Variable Selection with Spatially Autoregressive Errors: A Generalized Moments LASSO Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 146-200, September.
    16. Hillen, Judith, 2018. "Web Scraping For Food Price Research," 58th Annual Conference, Kiel, Germany, September 12-14, 2018 275840, German Association of Agricultural Economists (GEWISOLA).
    17. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
    18. Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW Kiel).
    19. Diego Aparicio & Roberto Rigobon, 2020. "Quantum Prices," NBER Working Papers 26646, National Bureau of Economic Research, Inc.
    20. Diego Aparicio & Zachary Metzman & Roberto Rigobon, 2024. "The pricing strategies of online grocery retailers," Quantitative Marketing and Economics (QME), Springer, vol. 22(1), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:107:y:2023:i:4:d:10.1007_s10182-022-00465-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.