IDEAS home Printed from https://ideas.repec.org/a/spr/agrhuv/v40y2023i1d10.1007_s10460-022-10336-z.html
   My bibliography  Save this article

Reuniting the Three Sisters: collaborative science with Native growers to improve soil and community health

Author

Listed:
  • D. G. Kapayou

    (World Languages and Cultures
    Sustainable Agriculture)

  • E. M. Herrighty

    (World Languages and Cultures
    Sustainable Agriculture)

  • C. Gish Hill

    (World Languages and Cultures
    Sustainable Agriculture)

  • V. Cano Camacho

    (Agronomy)

  • A. Nair

    (Agronomy)

  • D. M. Winham

    (Food Science and Human Nutrition)

  • M. D. McDaniel

    (Sustainable Agriculture
    Agronomy)

Abstract

Before Euro-American settlement, many Native American nations intercropped maize (Zea mays), beans (Phaseolus vulgaris), and squash (Cucurbita pepo) in what is colloquially called the “Three Sisters.” Here we review the historic importance and consequences of rejuvenation of Three Sisters intercropping (3SI), outline a framework to engage Native growers in community science with positive feedbacks to university research, and present preliminary findings from ethnography and a randomized, replicated 3SI experiment. We developed mutually beneficial collaborative research agendas with four Midwestern US Native American nations. Ethnographic data highlighted a culturally based respect for 3SI as living beings, the importance it holds for all cultural facets of these Native nations, and the critical impact the practice has on environmental sustainability. One concern expressed by Native growers during ethnographic research was improving soil health—part of the rationale for establishing the 3SI agronomic experiment. To address this, we collaboratively designed a 3SI experiment. After 1 year, 3SI increased short-term soil respiration by 24%, decreased salt-extractable nitrate by 54%, had no effect on soil microbial biomass (but increased its carbon-to-nitrogen ratio by 32%) compared to the average of monoculture crops. The overarching purpose of this collaborative project is to develop a deeper understanding of 3SI, its cultural importance to Native communities, and how reinvigorating the practice—and intercropping in general—can make agroecosystems more sustainable for people and the environment.

Suggested Citation

  • D. G. Kapayou & E. M. Herrighty & C. Gish Hill & V. Cano Camacho & A. Nair & D. M. Winham & M. D. McDaniel, 2023. "Reuniting the Three Sisters: collaborative science with Native growers to improve soil and community health," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(1), pages 65-82, March.
  • Handle: RePEc:spr:agrhuv:v:40:y:2023:i:1:d:10.1007_s10460-022-10336-z
    DOI: 10.1007/s10460-022-10336-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10460-022-10336-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10460-022-10336-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noa Kekuewa Lincoln, 2019. "Learning from indigenous agriculture," Nature Sustainability, Nature, vol. 2(3), pages 167-168, March.
    2. Santiago Lopez-Ridaura & Luis Barba-Escoto & Cristian Reyna & Jon Hellin & Bruno Gerard & Mark Wijk, 2019. "Food security and agriculture in the Western Highlands of Guatemala," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 817-833, August.
    3. Michel Loreau & Andy Hector, 2001. "Partitioning selection and complementarity in biodiversity experiments," Nature, Nature, vol. 412(6842), pages 72-76, July.
    4. James Cicarelli, 2012. "Economic Thought Among American Aboriginals Prior to 1492," American Journal of Economics and Sociology, Wiley Blackwell, vol. 71(1), pages 77-125, January.
    5. Michel Loreau & Andy Hector, 2001. "Erratum: Partitioning selection and complementarity in biodiversity experiments," Nature, Nature, vol. 413(6855), pages 548-548, October.
    6. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    7. Carlson, Leonard A., 1981. "Land allotment and the decline of American Indian farming," Explorations in Economic History, Elsevier, vol. 18(2), pages 128-154, April.
    8. Nathan Morrow & Luca Salvati & Andrea Colantoni & Nancy Mock, 2018. "Rooting the Future; On-Farm Trees’ Contribution to Household Energy Security and Asset Creation as a Resilient Development Pathway—Evidence from a 20-Year Panel in Rural Ethiopia," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela Woźniak & Monika Malicka & Jacek Kasztowski & Łukasz Radosz & Joanna Czarnecka & Jaco Vangronsveld & Dariusz Prostański, 2022. "How Important Are the Relations between Vegetation Diversity and Bacterial Functional Diversity for the Functioning of Novel Ecosystems?," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    2. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    5. Jonathan S. Lefcheck & Graham J. Edgar & Rick D. Stuart-Smith & Amanda E. Bates & Conor Waldock & Simon J. Brandl & Stuart Kininmonth & Scott D. Ling & J. Emmett Duffy & Douglas B. Rasher & Aneil F. A, 2021. "Species richness and identity both determine the biomass of global reef fish communities," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. György Barabás & Christine Parent & Andrew Kraemer & Frederik Perre & Frederik Laender, 2022. "The evolution of trait variance creates a tension between species diversity and functional diversity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.
    9. Gaowen Yang & Masahiro Ryo & Julien Roy & Daniel R. Lammel & Max-Bernhard Ballhausen & Xin Jing & Xuefeng Zhu & Matthias C. Rillig, 2022. "Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Shan Luo & Richard P. Phillips & Insu Jo & Songlin Fei & Jingjing Liang & Bernhard Schmid & Nico Eisenhauer, 2023. "Higher productivity in forests with mixed mycorrhizal strategies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Yuxin Chen & Anja Vogel & Cameron Wagg & Tianyang Xu & Maitane Iturrate-Garcia & Michael Scherer-Lorenzen & Alexandra Weigelt & Nico Eisenhauer & Bernhard Schmid, 2022. "Drought-exposure history increases complementarity between plant species in response to a subsequent drought," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Barbosa, Lorena Oliveira & dos Santos, Juscelina Arcanjo & Gonçalves, Anny Francielly Ataide & Campoe, Otávio Camargo & Scolforo, José Roberto Soares & Scolforo, Henrique Ferraço, 2023. "Competition in forest plantations: Empirical and process-based modelling in pine and eucalypt plantations," Ecological Modelling, Elsevier, vol. 483(C).
    13. Zhu, Shuang-Guo & Tao, Hong-Yan & Li, Wen-Bo & Zhou, Rui & Gui, Yan-Wen & Zhu, Li & Zhang, Xiao-Lin & Wang, Wei & Wang, Bao-Zhong & Mei, Fu-Jian & Zhu, Hao & Xiong, You-Cai, 2023. "Phosphorus availability mediates plant–plant interaction and field productivity in maize-grass pea intercropping system: Field experiment and its global validation," Agricultural Systems, Elsevier, vol. 205(C).
    14. Samuel E. Wuest & Lukas Schulz & Surbhi Rana & Julia Frommelt & Merten Ehmig & Nuno D. Pires & Ueli Grossniklaus & Christian S. Hardtke & Ulrich Z. Hammes & Bernhard Schmid & Pascal A. Niklaus, 2023. "Single-gene resolution of diversity-driven overyielding in plant genotype mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Cameron Wagg & Christiane Roscher & Alexandra Weigelt & Anja Vogel & Anne Ebeling & Enrica Luca & Anna Roeder & Clemens Kleinspehn & Vicky M. Temperton & Sebastian T. Meyer & Michael Scherer-Lorenzen , 2022. "Biodiversity–stability relationships strengthen over time in a long-term grassland experiment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    17. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    18. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    19. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    20. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:agrhuv:v:40:y:2023:i:1:d:10.1007_s10460-022-10336-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.