IDEAS home Printed from https://ideas.repec.org/a/scn/031730/14453089.html
   My bibliography  Save this article

Application of Ensemble Learning for views generation in Meucci portfolio optimization framework

Author

Listed:
  • Didenko Alexander

    (Financial University, Moscow)

  • Demicheva Svetlana

    (Financial University, Moscow)

Abstract

Modern Portfolio Theory assumes that decisions are made by individual agents. In reality most investors are involved in group decision-making. In this research we propose to realize group decision-making process by application of Ensemble Learning algorithm, in particular Random Forest. Predicting accurate asset returns is very important in the process of asset allocation. Most models are based on weak predictors. Ensemble Learning algorithms could significantly improve prediction of weak learners by combining them into one model, whichwill have superiority in performance. We combine technical fundamental and sentiment analysis in order to generate views on different asset classes. Purpose of the research is to build the model for Meucci Portfolio Optimization under views generated by Random Forest Ensemble Learning algorithm. The model was backtested by comparing with results obtained from other portfolio optimization frameworks.

Suggested Citation

  • Didenko Alexander & Demicheva Svetlana, 2013. "Application of Ensemble Learning for views generation in Meucci portfolio optimization framework," Review of Business and Economics Studies, CyberLeninka;Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет), issue 1, pages 100-110.
  • Handle: RePEc:scn:031730:14453089
    as

    Download full text from publisher

    File URL: http://cyberleninka.ru/article/n/application-of-ensemble-learning-for-views-generation-in-meucci-portfolio-optimization-framework
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, David C & Naranjo, Andy, 1997. "Economic Risk Factors and Commercial Real Estate Returns," The Journal of Real Estate Finance and Economics, Springer, vol. 14(3), pages 283-307, May.
    2. Solnik, B H, 1974. "The International Pricing of Risk: An Empirical Investigation of the World Capital Market Structure," Journal of Finance, American Finance Association, vol. 29(2), pages 365-378, May.
    3. Roll, Richard & Ross, Stephen A, 1980. " An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
    4. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," Review of Economic Studies, Oxford University Press, vol. 25(2), pages 65-86.
    5. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    6. Lance J. Bachmeier & James M. Griffin, 2006. "Testing for Market Integration: Crude Oil, Coal, and Natural Gas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 55-72.
    7. Menkhoff, Lukas, 2010. "The use of technical analysis by fund managers: International evidence," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
    8. Wing-Keung Wong & Meher Manzur & Boon-Kiat Chew, 2003. "How rewarding is technical analysis? Evidence from Singapore stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 543-551.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Tanaka-Yamawaki, Mieko & Tokuoka, Seiji, 2007. "Adaptive use of technical indicators for the prediction of intra-day stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 125-133.
    11. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    12. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    13. Weiner, R.J., 1991. "Is the World Oil Market "One Great Pool?"," Papers 9120, Laval - Recherche en Energie.
    14. Robert J. Weiner, 1991. "Is the World Oil Market "One Great Pool"?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 95-108.
    15. Mei, Jianping & Liu, Crocker H, 1994. "The Predictability of Real Estate Returns and Market Timing," The Journal of Real Estate Finance and Economics, Springer, vol. 8(2), pages 115-135, March.
    16. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    17. Ki-Yeol Kwon & Richard Kish, 2002. "Technical trading strategies and return predictability: NYSE," Applied Financial Economics, Taylor & Francis Journals, vol. 12(9), pages 639-653.
    18. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    19. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:031730:14453089. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CyberLeninka). General contact details of provider: http://cyberleninka.ru/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.