IDEAS home Printed from https://ideas.repec.org/a/sae/vision/v28y2024i2p193-209.html
   My bibliography  Save this article

A Comparative Study of Financial Crises: Fractal Dissection of Investor Rationality

Author

Listed:
  • Sonali Agarwal
  • Anshul Vats

Abstract

Any non-linear dynamic system can be checked for structural properties only at the time of extremes/crises. Hence, in this research article we tried to investigate stock markets for visible patterns or structures in the vicinity of crashes. We used fractal dimension analysis for studying the volatility of prices and presence of noise and patterns in the time series data of NIFTY, SENSEX and gold. We found change in market predictability of the various time series in the surrounding of crash points. There was measurable change in persistence levels around rupture points. It can be concluded that excessive order in stock markets can choke the markets which then witness crashes to relieve this symmetry and resume randomness for normal functioning. We supported the results with behavioural biases and patterns of investors. The repetitive trading psychology, different intensity of emotions of investors towards their gains and losses, and onset of irrationality and fear leads to worsening of any financial crisis. The crashes can have devastating effects on the economy and the investors. We there have tried to find visible patterns that can serve as warning signals of an approaching crisis. This can be of special assistance to the investors, traders and speculators who enjoy playing in the stock market.

Suggested Citation

  • Sonali Agarwal & Anshul Vats, 2024. "A Comparative Study of Financial Crises: Fractal Dissection of Investor Rationality," Vision, , vol. 28(2), pages 193-209, April.
  • Handle: RePEc:sae:vision:v:28:y:2024:i:2:p:193-209
    DOI: 10.1177/09722629211022518
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/09722629211022518
    Download Restriction: no

    File URL: https://libkey.io/10.1177/09722629211022518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    2. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    3. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    4. B. B. Mandelbrot, 2001. "Scaling in financial prices: IV. Multifractal concentration," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 641-649.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    2. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    3. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    4. He, Ling-Yun & Fan, Ying & Wei, Yi-Ming, 2009. "Impact of speculator's expectations of returns and time scales of investment on crude oil price behaviors," Energy Economics, Elsevier, vol. 31(1), pages 77-84, January.
    5. Los, Cornelis A. & Yu, Bing, 2008. "Persistence characteristics of the Chinese stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 64-82.
    6. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    7. V Dimitrova & M Fernández-Martínez & M A Sánchez-Granero & J E Trinidad Segovia, 2019. "Some comments on Bitcoin market (in)efficiency," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-14, July.
    8. A. Sensoy & Benjamin M. Tabak, 2013. "How much random does European Union walk? A time-varying long memory analysis," Working Papers Series 342, Central Bank of Brazil, Research Department.
    9. Cajueiro, Daniel O. & Tabak, Benjamin M., 2010. "Fluctuation dynamics in US interest rates and the role of monetary policy," Finance Research Letters, Elsevier, vol. 7(3), pages 163-169, September.
    10. Jamdee, Sutthisit & Los, Cornelis A., 2007. "Long memory options: LM evidence and simulations," Research in International Business and Finance, Elsevier, vol. 21(2), pages 260-280, June.
    11. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    12. Luis Miguel Doncel & Pilar Grau-Carles & Jorge Sainz, 2009. "On the long-term behavior of mutual fund returns," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 653-660.
    13. J. Coulon & Y. Malevergne, 2011. "Heterogeneous expectations and long-range correlation of the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1329-1356, November.
    14. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    15. Rizvi, Syed Aun R. & Dewandaru, Ginanjar & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 86-99.
    16. Mariusz Tarnopolski, 2017. "Modeling the price of Bitcoin with geometric fractional Brownian motion: a Monte Carlo approach," Papers 1707.03746, arXiv.org, revised Aug 2017.
    17. Aloui, Chaker & Shahzad, Syed Jawad Hussain & Jammazi, Rania, 2018. "Dynamic efficiency of European credit sectors: A rolling-window multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 337-349.
    18. Mehmet Ali Balcı & Larissa M. Batrancea & Ömer Akgüller & Lucian Gaban & Mircea-Iosif Rus & Horia Tulai, 2022. "Fractality of Borsa Istanbul during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(14), pages 1-33, July.
    19. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    20. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:vision:v:28:y:2024:i:2:p:193-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.