IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v32y2003i1p30-63.html

Bayesian Inference for Heterogeneous Event Counts

Author

Listed:
  • Andrew D. Martin

Abstract

This article presents an integrated set of Bayesian tools one can use to model heterogeneous event counts. While models for event count cross sections are now widely used, little has been written about how to model counts when contextual factors introduce heterogeneity. The author begins with a discussion of Bayesian cross-sectional count models and discusses an alternative model for counts with overdispersion. To illustrate the Bayesian framework, the author fits the model to the number of women’s rights cosponsorships for each member of the 83rd to 102nd House of Representatives. The model is generalized to allow for contextual heterogeneity. The hierarchical model allows one to explicitly model contextual factors and test alternative contextual explanations, even with a small number of contextual units. The author compares the estimates from this model with traditional approaches and discusses software one can use to easily implement these Bayesian models with little start-up cost.

Suggested Citation

  • Andrew D. Martin, 2003. "Bayesian Inference for Heterogeneous Event Counts," Sociological Methods & Research, , vol. 32(1), pages 30-63, August.
  • Handle: RePEc:sae:somere:v:32:y:2003:i:1:p:30-63
    DOI: 10.1177/0049124103253500
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124103253500
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124103253500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin, Andrew D., 2001. "Congressional Decision Making and the Separation of Powers," American Political Science Review, Cambridge University Press, vol. 95(2), pages 361-378, June.
    2. Western, Bruce & Jackman, Simon, 1994. "Bayesian Inference for Comparative Research," American Political Science Review, Cambridge University Press, vol. 88(2), pages 412-423, June.
    3. N. E. Breslow, 1984. "Extra‐Poisson Variation in Log‐Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 38-44, March.
    4. Gary King & Ori Rosen & Martin A. Tanner, 1999. "Binomial-Beta Hierarchical Models for Ecological Inference," Sociological Methods & Research, , vol. 28(1), pages 61-90, August.
    5. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    6. Gary King, 1989. "A Seemingly Unrelated Poisson Regression Model," Sociological Methods & Research, , vol. 17(3), pages 235-255, February.
    7. Chib, Siddhartha & Greenberg, Edward & Winkelmann, Rainer, 1998. "Posterior simulation and Bayes factors in panel count data models," Journal of Econometrics, Elsevier, vol. 86(1), pages 33-54, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herriges, Joseph A. & Phaneuf, Daniel J. & Tobias, Justin L., 2008. "Estimating demand systems when outcomes are correlated counts," Journal of Econometrics, Elsevier, vol. 147(2), pages 282-298, December.
    2. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    3. William Reed, 2003. "Information and Economic Interdependence," Journal of Conflict Resolution, Peace Science Society (International), vol. 47(1), pages 54-71, February.
    4. B.P.M. McCabe & G.M. Martin, 2003. "Coherent Predictions of Low Count Time Series," Monash Econometrics and Business Statistics Working Papers 8/03, Monash University, Department of Econometrics and Business Statistics.
    5. Daniel A. Griffith & Manfred M. Fischer & James LeSage, 2017. "The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions," Letters in Spatial and Resource Sciences, Springer, vol. 10(1), pages 75-86, March.
    6. Irene L. Hudson & Linda Moore & Eric J. Beh & David G. Steel, 2010. "Ecological inference techniques: an empirical evaluation using data describing gender and voter turnout at New Zealand elections, 1893–1919," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 185-213, January.
    7. Germà Bel & Óscar Gasulla & Ferran A. Mazaira-Font, 2020. "The effect of health and economic costs on governments' policy responses to COVID-19 crisis, under incomplete information," IREA Working Papers 202008, University of Barcelona, Research Institute of Applied Economics, revised Jun 2020.
    8. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    9. De Oliveira, Victor, 2013. "Hierarchical Poisson models for spatial count data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 393-408.
    10. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    11. Alain Pirotte & Jean-Loup Madre, 2011. "Determinants of Urban Sprawl in France," Urban Studies, Urban Studies Journal Limited, vol. 48(13), pages 2865-2886, October.
    12. Jeonghwan Kim & Woojoo Lee, 2019. "On testing the hidden heterogeneity in negative binomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 457-470, May.
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Hariharan, Vijay Ganesh & Landsman, Vardit & Stremersch, Stefan, 2024. "Branded response to generic entry: Detailing beyond the patent cliff," International Journal of Research in Marketing, Elsevier, vol. 41(3), pages 567-588.
    15. Congdon, Peter, 2008. "A bivariate frailty model for events with a permanent survivor fraction and non-monotonic hazards; with an application to age at first maternity," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4346-4356, May.
    16. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    17. Benjamin T. Skinner, 2019. "Making the Connection: Broadband Access and Online Course Enrollment at Public Open Admissions Institutions," Research in Higher Education, Springer;Association for Institutional Research, vol. 60(7), pages 960-999, November.
    18. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    19. Burkey, Mark L. & Obeng, Kofi, 2005. "Crash Risk Reduction at Signalized Intersections Using Longitudinal Data," MPRA Paper 36281, University Library of Munich, Germany.
    20. Ballinger, Clint, 2011. "Why inferential statistics are inappropriate for development studies and how the same data can be better used," MPRA Paper 29780, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:32:y:2003:i:1:p:30-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.