IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v41y2020i2p47-72.html
   My bibliography  Save this article

Spatial Effects of Wind Generation and Its Implication for Wind Farm Investment Decisions in New Zealand

Author

Listed:
  • Le Wen
  • Basil Sharp
  • Erwann Sbai

Abstract

Spill-over effects on electricity nodal prices associated with increased wind generation have not been examined in the literature. To examine these effects, we use spatial econometric models to estimate the direct and indirect effects of wind generation on nodal wholesale electricity prices. Spatial econometric models allow us to provide quantitative estimates of spill-over magnitudes and statistical tests for significance. Results show negative and significant effects are associated with increases in wind penetration, and the effect is stronger during peak hours and weaker during off-peak hours. Simulation results demonstrate net savings of NZ$8 million per MW of additional wind capacity installed at the CNI2 wind site. The findings provide valuable information on the evaluation of wind farm development in terms of site location, wholesale prices, and financial feasibility. Our approach also contributes to forecasting location specific wholesale electricity prices, and provides a better understanding of the implications of locating wind sites.

Suggested Citation

  • Le Wen & Basil Sharp & Erwann Sbai, 2020. "Spatial Effects of Wind Generation and Its Implication for Wind Farm Investment Decisions in New Zealand," The Energy Journal, , vol. 41(2), pages 47-72, March.
  • Handle: RePEc:sae:enejou:v:41:y:2020:i:2:p:47-72
    DOI: 10.5547/01956574.41.2.lwen
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.41.2.lwen
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.41.2.lwen?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Oliver Browne & Stephen Poletti & David Young, 2012. "Simulating market power in the New Zealand electricity market," New Zealand Economic Papers, Taylor & Francis Journals, vol. 46(1), pages 35-50, December.
    2. Sébastien Annan-Phan and Fabien A. Roques, 2018. "Market Integration and Wind Generation: An Empirical Analysis of the Impact of Wind Generation on Cross-Border Power Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Alessandra Faggian & Philip McCann, 2009. "Human capital, graduate migration and innovation in British regions," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 33(2), pages 317-333, March.
    4. Suomalainen, Kiti & Pritchard, Geoffrey & Sharp, Basil & Yuan, Ziqi & Zakeri, Golbon, 2015. "Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand," Applied Energy, Elsevier, vol. 137(C), pages 445-462.
    5. Mason, I.G. & Page, S.C. & Williamson, A.G., 2010. "A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources," Energy Policy, Elsevier, vol. 38(8), pages 3973-3984, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Le & Guang, Fengtao & Sharp, Basil, 2021. "Dynamics in Aotearoa New Zealand’s energy consumption between 2006/2007 and 2012/2013," Energy, Elsevier, vol. 225(C).
    2. Ajanaku, Bolarinwa A. & Collins, Alan R., 2024. "“Comparing merit order effects of wind penetration across wholesale electricity markets”," Renewable Energy, Elsevier, vol. 226(C).
    3. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
    4. Lai, Chunyang & Kazemtabrizi, Behzad, 2024. "A novel data-driven tighten-constraint method for wind-hydro hybrid power system to improve day-ahead plan performance in real-time operation," Applied Energy, Elsevier, vol. 371(C).
    5. Yang Yi & Le Wen & Shan He, 2022. "Partitioning for “Common but Differentiated” Precise Air Pollution Governance: A Combined Machine Learning and Spatial Econometric Approach," Energies, MDPI, vol. 15(9), pages 1-23, May.
    6. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    7. Mohapatra, Souryabrata & Wen, Le & Sharp, Basil & Sahoo, Dukhabandhu, 2024. "Unveiling the spatial dynamics of climate impact on rice yield in India," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 922-945.
    8. Wen, Le & Suomalainen, Kiti & Sharp, Basil & Yi, Ming & Sheng, Mingyue Selena, 2022. "Impact of wind-hydro dynamics on electricity price: A seasonal spatial econometric analysis," Energy, Elsevier, vol. 238(PC).
    9. Wen, Le & Sheng, Mingyue Selena & Sharp, Basil & Meng, Tongyu & Du, Bo & Yi, Ming & Suomalainen, Kiti & Gkritza, Konstantina, 2023. "Exploration of the nexus between solar potential and electric vehicle uptake: A case study of Auckland, New Zealand," Energy Policy, Elsevier, vol. 173(C).
    10. De Siano, Rita & Sapio, Alessandro, 2022. "Spatial merit order effects of renewables in the Italian power exchange," Energy Economics, Elsevier, vol. 108(C).
    11. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Le & Suomalainen, Kiti & Sharp, Basil & Yi, Ming & Sheng, Mingyue Selena, 2022. "Impact of wind-hydro dynamics on electricity price: A seasonal spatial econometric analysis," Energy, Elsevier, vol. 238(PC).
    2. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    3. Gholami, Mina Bahrami & Poletti, Stephen & Staffell, Iain, 2021. "Wind, rain, fire and sun: Towards zero carbon electricity for New Zealand," Energy Policy, Elsevier, vol. 150(C).
    4. Jaewon Lim & Changkeun Lee & Euijune Kim, 2015. "Contributions of human capital investment policy to regional economic growth: an interregional CGE model approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 55(2), pages 269-287, December.
    5. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    6. Andrés Rodríguez-Pose & Tobias D. Ketterer, 2012. "Do Local Amenities Affect The Appeal Of Regions In Europe For Migrants?," Journal of Regional Science, Wiley Blackwell, vol. 52(4), pages 535-561, October.
    7. Simona Iammarino & Elisabetta Marinelli & Elisabetta Marinelli, 2011. "Is the Grass Greener on the other Side of the Fence? Graduate Mobility and Job Satisfaction in Italy," Environment and Planning A, , vol. 43(11), pages 2761-2777, November.
    8. Hamed Pourzolfaghar & Faisal Abnisa & Wan Mohd Ashri Wan Daud & Mohamed Kheireddine Aroua & Teuku Meurah Indra Mahlia, 2020. "Catalyst Characteristics and Performance of Silica-Supported Zinc for Hydrodeoxygenation of Phenol," Energies, MDPI, vol. 13(11), pages 1-13, June.
    9. Bowei Guo & Newbery David, 2023. "The Cost of Carbon Leakage: Britain’s Carbon Price Support and Cross-border Electricity Trade," The Energy Journal, , vol. 44(1), pages 9-32, January.
    10. Haifeng Qian, 2013. "Diversity Versus Tolerance: The Social Drivers of Innovation and Entrepreneurship in US Cities," Urban Studies, Urban Studies Journal Limited, vol. 50(13), pages 2718-2735, October.
    11. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    12. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    13. Vika Koban, 2017. "The impact of market coupling on Hungarian and Romanian electricity markets: Evidence from the regime-switching model," Energy & Environment, , vol. 28(5-6), pages 621-638, September.
    14. Yang, Gaoju & Wang, Fang & Huang, Xianhai & Chen, Hangyu, 2022. "Human capital inflow, firm innovation and patent mix," Journal of Asian Economics, Elsevier, vol. 79(C).
    15. Riccardo Crescenzi & Nancy Holman & Enrico Orru’, 2017. "Why do they return? Beyond the economic drivers of graduate return migration," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 59(3), pages 603-627, November.
    16. Samarth Kumar & David Schönheit & Matthew Schmidt & Dominik Möst, 2019. "Parsing the Effects of Wind and Solar Generation on the German Electricity Trade Surplus," Energies, MDPI, vol. 12(18), pages 1-17, September.
    17. Judit Oláh & György Halasi & Zoltán Szakály & József Popp, 2017. "The Impact of International Migration on the Labor Market – A Case Study from Hungary," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 19(46), pages 790-790, August.
    18. Belal Fallah & Mark D. Partridge & Dan S. Rickman, 2014. "Geography and High-Tech Employment Growth in US Counties," Journal of Economic Geography, Oxford University Press, vol. 14(4), pages 683-720.
    19. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    20. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.

    More about this item

    Keywords

    Merit-order effect; Spatial econometrics; Wind penetration; Nodal price; Wind investment;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:41:y:2020:i:2:p:47-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.