IDEAS home Printed from https://ideas.repec.org/a/ris/sphecs/0298.html
   My bibliography  Save this article

The Role Of Interdependencies Between Critical Infrastructures In Rural Development

Author

Listed:
  • ASIMOPOLOS, Laurentiu

    (Geological Institute of Romania)

  • ASIMOPOLOS, Adrian-Aristide

    (University Politehnica of Bucharest, Faculty of Transportation)

  • ASIMOPOLOS, Natalia-Silvia

    (Geological Institute of Romania)

Abstract

In the general context, the phenomenon of globalization causes an increase in risks to critical infrastructures. In order to order this set, the criteria of dependence and interdependence were imposed. Thus, was proposed a model with seven levels, the first being sector analysis and the second one the study of interdependencies.The first level is organized in critical sectors and dependencies between them. This division, which engendered the public-private partnership, is show on the EU and NATO documents

Suggested Citation

  • ASIMOPOLOS, Laurentiu & ASIMOPOLOS, Adrian-Aristide & ASIMOPOLOS, Natalia-Silvia, 2018. "The Role Of Interdependencies Between Critical Infrastructures In Rural Development," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 18(2), pages 63-81.
  • Handle: RePEc:ris:sphecs:0298
    as

    Download full text from publisher

    File URL: http://anale.spiruharet.ro/index.php/economics/article/view/1823
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephanie E. Chang & Timothy L. McDaniels & Joey Mikawoz & Krista Peterson, 2007. "Infrastructure failure interdependencies in extreme events: power outage consequences in the 1998 Ice Storm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 337-358, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Samimi & Sadoullah Ebrahimnejad & Mohammad Mojtahedi, 2020. "Analysis of the susceptibility of interdependent infrastructures using fuzzy input–output inoperability model: the case of flood hazards in Tehran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 69-88, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dunn, Laurel N. & Sohn, Michael D. & LaCommare, Kristina Hamachi & Eto, Joseph H., 2019. "Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability," Energy Policy, Elsevier, vol. 129(C), pages 206-214.
    2. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    3. Federico Antonello & Piero Baraldi & Enrico Zio & Luigi Serio, 2022. "A Novel Metric to Evaluate the Association Rules for Identification of Functional Dependencies in Complex Technical Infrastructures," Environment Systems and Decisions, Springer, vol. 42(3), pages 436-449, September.
    4. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    6. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Joanna Resurreccion & Joost Santos, 2013. "Uncertainty modeling of hurricane-based disruptions to interdependent economic and infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1497-1518, December.
    8. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Paul Maliszewski & Elisabeth Larson & Charles Perrings, 2013. "Valuing the Reliability of the Electrical Power Infrastructure: A Two-stage Hedonic Approach," Urban Studies, Urban Studies Journal Limited, vol. 50(1), pages 72-87, January.
    11. Jalal Ali & Joost R. Santos, 2015. "Modeling the Ripple Effects of IT‐Based Incidents on Interdependent Economic Systems," Systems Engineering, John Wiley & Sons, vol. 18(2), pages 146-161, March.
    12. Scott Thacker & Stuart Barr & Raghav Pant & Jim W. Hall & David Alderson, 2017. "Geographic Hotspots of Critical National Infrastructure," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2490-2505, December.
    13. Cinta Lomba-Fernández & Josune Hernantes & Leire Labaka, 2019. "Guide for Climate-Resilient Cities: An Urban Critical Infrastructures Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    14. Ryan Hruska & Kent McGillivary & Robert Edsall, 2021. "A Functional All‐Hazard Approach to Critical Infrastructure Dependency Analysis," Journal of Critical Infrastructure Policy, John Wiley & Sons, vol. 2(2), pages 103-123, September.
    15. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    16. Kelsea Best & Siobhan Kerr & Allison Reilly & Anand Patwardhan & Deb Niemeier & Seth Guikema, 2023. "Spatial regression identifies socioeconomic inequality in multi-stage power outage recovery after Hurricane Isaac," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 851-873, May.
    17. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    18. Nadia Benali and Kais Saidi, 2017. "A Robust Analysis of the Relationship between Natural Disasters, Electricity and Economic Growth in 41 Countries," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 42(3), pages 89-109, September.
    19. Juyeong Choi & Abhijeet Deshmukh & Nader Naderpajouh & Makarand Hastak, 2017. "Dynamic relationship between functional stress and strain capacity of post-disaster infrastructure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 817-841, June.
    20. Maliszewski, Paul J. & Larson, Elisabeth K. & Perrings, Charles, 2012. "Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 161-171.

    More about this item

    Keywords

    threats; vulnerabilities; risks; critical infrastructure; interdependences;
    All these keywords.

    JEL classification:

    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:sphecs:0298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aurelian A BONDREA or Constantin Mecu (email available below). General contact details of provider: https://edirc.repec.org/data/ffuspro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.