IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0279.html
   My bibliography  Save this article

Dynamic optimization of an investment portfolio on European stock markets using pair copulas

Author

Listed:
  • Atskanov, Isuf

    () (Aton Asset Management, Moscow, Russian Federation)

Abstract

This paper proposes a procedure for dynamic optimization of an investment portfolio, consisting of stock market indices. SJC-copulas were used to assets statistical characteristics of assets. Copulas allow to measure interdependence between financial instruments, and to build an efficient investment portfolio. Since statistical characteristics of assets are changing with time, the structure of the portfolio is upgrading accordingly. The portfolio is then compared with two benchmarks in terms of return and risk. As a result the proposed procedure provides better performance. Also, the paper studies building a portfolio with short positions

Suggested Citation

  • Atskanov, Isuf, 2015. "Dynamic optimization of an investment portfolio on European stock markets using pair copulas," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 40(4), pages 84-105.
  • Handle: RePEc:ris:apltrx:0279
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2015_4_84-105.pdf
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Aloui, Riadh & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2013. "A time-varying copula approach to oil and stock market dependence: The case of transition economies," Energy Economics, Elsevier, vol. 39(C), pages 208-221.
    3. Silvo Dajčman, 2013. "Interdependence Between Some Major European Stock Markets - A Wavelet Lead/Lag Analysis," Prague Economic Papers, University of Economics, Prague, vol. 2013(1), pages 28-49.
    4. Kenourgios, Dimitris & Samitas, Aristeidis, 2009. "Financial Market Dynamics in an Enlarged European Union," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 24, pages 197-221.
    5. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173.
    6. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    7. Alexandra Dias & Paul Embrechts, 2004. "Dynamic copula models for multivariate high-frequency data in finance," Working Papers wpn04-01, Warwick Business School, Finance Group.
    8. Fabio Busetti & Andrew Harvey, 2011. "When is a Copula Constant? A Test for Changing Relationships," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(1), pages 106-131, Winter.
    9. Mesfioui, Mhamed & Quessy, Jean-François, 2008. "Dependence structure of conditional Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 372-385, March.
    10. Bartram, Sohnke M. & Taylor, Stephen J. & Wang, Yaw-Huei, 2007. "The Euro and European financial market dependence," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1461-1481, May.
    11. Rob van den Goorbergh, 2004. "A Copula-Based Autoregressive Conditional Dependence Model of International Stock Markets," DNB Working Papers 022, Netherlands Central Bank, Research Department.
    12. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    13. Philippas, Dionisis & Siriopoulos, Costas, 2013. "Putting the “C” into crisis: Contagion, correlations and copulas on EMU bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 27(C), pages 161-176.
    14. Hu, Jian, 2008. "Dependence Structures in Chinese and U.S. Financial Markets -- A Time-varying Conditional Copula Approach," MPRA Paper 11401, University Library of Munich, Germany.
    15. Busetti, Fabio & Taylor, A. M. Robert, 2004. "Tests of stationarity against a change in persistence," Journal of Econometrics, Elsevier, vol. 123(1), pages 33-66, November.
    16. Cathy Ning, 2009. "Extreme Dependence in International Stock Markets," Working Papers 008, Ryerson University, Department of Economics.
    17. Ning, Cathy & Wirjanto, Tony S., 2009. "Extreme return-volume dependence in East-Asian stock markets: A copula approach," Finance Research Letters, Elsevier, vol. 6(4), pages 202-209, December.
    18. Kakouris, Iakovos & Rustem, Berç, 2014. "Robust portfolio optimization with copulas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 28-37.
    19. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    20. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    SJC-copulas; dynamic portfolio optimization; asset returns interdependence; Monte-Carlo simulation; CVaR;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0279. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anatoly Peresetsky). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.