IDEAS home Printed from https://ideas.repec.org/a/rfa/aefjnl/v6y2019i3p1-6.html
   My bibliography  Save this article

AR Model or Machine Learning for Forecasting GDP and Consumer Price for G7 Countries

Author

Listed:
  • Yutaka Kurihara
  • Akio Fukushima

Abstract

This paper examines the validity of forecasting economic variables by using machine learning. AI (artificial intelligence) has been improved and entering our society rapidly, and the economic forecast is no exception. In the real business world, AI has been used for economic forecasts, but not so many studies focus on machine learning. Machine learning is focused in this paper and a traditional statistical model, the autoregressive (AR) model is also used for comparison. A comparison of using an AR model and machine learning (LSTM) to forecast GDP and consumer price is conducted using recent cases from G7 countries. The empirical results show that the traditional forecasting AR model is a little more appropriate than the machine learning model, however, there is little difference to forecast consumer price between them.

Suggested Citation

  • Yutaka Kurihara & Akio Fukushima, 2019. "AR Model or Machine Learning for Forecasting GDP and Consumer Price for G7 Countries," Applied Economics and Finance, Redfame publishing, vol. 6(3), pages 1-6, May.
  • Handle: RePEc:rfa:aefjnl:v:6:y:2019:i:3:p:1-6
    as

    Download full text from publisher

    File URL: http://redfame.com/journal/index.php/aef/article/view/4126/4417
    Download Restriction: no

    File URL: http://redfame.com/journal/index.php/aef/article/view/4126
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hur, Joonyoung, 2018. "Time-varying information rigidities and fluctuations in professional forecasters' disagreement," Economic Modelling, Elsevier, vol. 75(C), pages 117-131.
    2. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    3. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noisy News in Business Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.
    4. Francisco Dias & Maximiano Pinheiro & António Rua, 2018. "A bottom-up approach for forecasting GDP in a data-rich environment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 718-723, June.
    5. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    6. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    7. Gebka, Bartosz & Wohar, Mark E., 2018. "The predictive power of the yield spread for future economic expansions: Evidence from a new approach," Economic Modelling, Elsevier, vol. 75(C), pages 181-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Hopp, 2021. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Papers 2106.08901, arXiv.org.
    2. Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
    3. Ádám Csápai, 0000. "Macroeconomic Forecasting Using Machine Learning: A Case of Slovakia," Proceedings of Economics and Finance Conferences 14115967, International Institute of Social and Economic Sciences.
    4. Danjun Wang & Zhanyang Zhang & Fengwei Wang & Xiaomeng Qiu, 2024. "Quantification of the short-term impact of economic shock events on the gross domestic product of 31 provinces in China from 2005 to 2022," SN Business & Economics, Springer, vol. 4(8), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenard Lieb & Adam Jassem & Rui Jorge Almeida & Nalan Baştürk & Stephan Smeekes, 2025. "Min(d)ing the President: A Text Analytic Approach to Measuring Tax News," American Economic Journal: Macroeconomics, American Economic Association, vol. 17(2), pages 285-314, April.
    2. Larsen, Vegard H. & Thorsrud, Leif A., 2019. "The value of news for economic developments," Journal of Econometrics, Elsevier, vol. 210(1), pages 203-218.
    3. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    4. Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    5. Oscar Calvo-Gonz'alez & Axel Eizmendi & Germ'an Reyes, 2022. "The Shifting Attention of Political Leaders: Evidence from Two Centuries of Presidential Speeches," Papers 2209.00540, arXiv.org, revised Jun 2023.
    6. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noise Bubbles," Economic Journal, Royal Economic Society, vol. 127(604), pages 1940-1976, September.
    7. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    8. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    9. Mueller, Hannes & Rauh, Christopher, 2018. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," American Political Science Review, Cambridge University Press, vol. 112(2), pages 358-375, May.
    10. Ryan Chahrour & Kyle Jurado, 2018. "News or Noise? The Missing Link," American Economic Review, American Economic Association, vol. 108(7), pages 1702-1736, July.
    11. B. Onur Tas, 2012. "Why does the Federal Reserve Forecast Inflation Better than Everyone Else?," Working Papers 1207, TOBB University of Economics and Technology, Department of Economics.
    12. Luis Felipe Gutiérrez & Neda Tavakoli & Sima Siami-Namini & Akbar Siami Namin, 2022. "Similarity analysis of federal reserve statements using document embeddings: the Great Recession vs. COVID-19," SN Business & Economics, Springer, vol. 2(7), pages 1-28, July.
    13. Bennani, Hamza & Romelli, Davide, 2024. "Exploring the informativeness and drivers of tone during committee meetings: The case of the Federal Reserve," Journal of International Money and Finance, Elsevier, vol. 148(C).
    14. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    15. Campa, Jose Manuel & Chang, P. H. Kevin, 1998. "The forecasting ability of correlations implied in foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 17(6), pages 855-880, December.
    16. Bedri Kamil Onur Taş, 2016. "Does the Federal Reserve have Private Information about its Future Actions?," Economica, London School of Economics and Political Science, vol. 83(331), pages 498-517, July.
    17. Javier Gil-Bazo & Juan F. Imbet, 2022. "Tweeting for money: Social media and mutual fund flows," Economics Working Papers 1846, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Di Bella, Gabriel & Grigoli, Francesco, 2019. "Optimism, pessimism, and short-term fluctuations," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 79-96.
    19. McCannon, Bryan & Zhou, Yang & Hall, Joshua, 2021. "Measuring a Contract’s Breadth: A Text Analysis," Working Papers 11013, George Mason University, Mercatus Center.
    20. Bloom, David E. & Canning, David & Fink, Gunther & Finlay, Jocelyn E., 2007. "Does age structure forecast economic growth?," International Journal of Forecasting, Elsevier, vol. 23(4), pages 569-585.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfa:aefjnl:v:6:y:2019:i:3:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Redfame publishing (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.