IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A Note on Option Pricing with the Use of Discrete-Time Stochastic Volatility Processes

  • Anna Pajor


    (Cracow University of Economics)

In this paper we show that in the lognormal discrete-time stochastic volatility model with predictable conditional expected returns, the conditional expected value of the discounted payoff of a European call option is infinite. Our empirical illustration shows that the characteristics of the predictive distributions of the discounted payoffs, obtained using Monte Carlo methods, do not indicate directly that the expected discounted payoffs are infinite.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Article provided by CEJEME in its journal Central European Journal of Economic Modelling and Econometrics.

Volume (Year): 1 (2009)
Issue (Month): 1 (March)
Pages: 71-81

in new window

Handle: RePEc:psc:journl:v:1:y:2009:i:1:p:71-81
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ronald J. Mahieu & Peter C. Schotman, 1998. "An empirical application of stochastic volatility models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 333-360.
  2. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  3. Jiang, G.J. & van der Sluis, P.J., 2000. "Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates," Discussion Paper 2000-36, Tilburg University, Center for Economic Research.
  4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  5. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
  6. Amin, Kaushik I & Ng, Victor K, 1993. " Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:1:y:2009:i:1:p:71-81. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Krzysztof Osiewalski)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.