IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0339453.html

A hybrid machine learning model for pulmonary tuberculosis forecasting of Chongqing with adjacent-region data

Author

Listed:
  • Yilin Zhang
  • Hongbo Song
  • Shuangxueer Zhang
  • Xiaoying Wang
  • Junjie Tang

Abstract

Pulmonary Tuberculosis (PTB) remains a serious infectious disease and a major global public health problem. Accurate prediction of PTB epidemics is essential to support health authorities in developing effective prevention and control strategies. This study proposed a novel two-stage hybrid prediction model that integrates a seasonal autoregressive integrated moving average (SARIMA) model and a support vector regression (SVR) model in parallel, followed in series by an extreme learning machine (ELM) optimized via the sparrow search algorithm. Furthermore, recognizing the notable spatial correlation characteristic of airborne PTB transmission, this study incorporates PTB incidence data from surrounding regions of the target area as additional input features to enhance the model with supplementary spatial information, thereby improving prediction accuracy. Validation using real-world PTB incidence data from Chongqing, China, demonstrates the superior performance of the proposed model, which reduces prediction errors by 18.47% to 77.38% compared to existing hybrid models. The inclusion of adjacent regional incidence data further significantly enhances predictive accuracy, reducing errors by 20.92% to 68.74%. The outcomes of this study are expected to facilitate earlier insights into PTB incidence trends and provide valuable support for public health decision-making in PTB prevention and control.

Suggested Citation

  • Yilin Zhang & Hongbo Song & Shuangxueer Zhang & Xiaoying Wang & Junjie Tang, 2025. "A hybrid machine learning model for pulmonary tuberculosis forecasting of Chongqing with adjacent-region data," PLOS ONE, Public Library of Science, vol. 20(12), pages 1-24, December.
  • Handle: RePEc:plo:pone00:0339453
    DOI: 10.1371/journal.pone.0339453
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0339453
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0339453&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0339453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    3. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    4. Zefan Dong & Yonghui Zhou, 2024. "A Novel Hybrid Model for Financial Forecasting Based on CEEMDAN-SE and ARIMA-CNN-LSTM," Mathematics, MDPI, vol. 12(16), pages 1-16, August.
    5. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Xin Liu, 2025. "Multi-Scale TsMixer: A Novel Time-Series Architecture for Predicting A-Share Stock Index Futures," Mathematics, MDPI, vol. 13(9), pages 1-19, April.
    7. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    8. Xiangzhou Chen & Zhi Long, 2023. "E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    9. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
    10. Yang, Kailing & Zhang, Xi & Luo, Haojia & Hou, Xianping & Lin, Yu & Wu, Jingyu & Yu, Liang, 2024. "Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting," Energy, Elsevier, vol. 298(C).
    11. Zakaria Boulanouar & Ghassane Benrhmach & Rihab Grassa & Sonia Abdennadher & Mariam Aldhaheri, 2024. "Exploring the predictive power of artificial neural networks in linking global Islamic indices with a local Islamic index," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    12. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    13. Dongsu Kim & Yongjun Lee & Kyungil Chin & Pedro J. Mago & Heejin Cho & Jian Zhang, 2023. "Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    14. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
    15. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    16. Maosheng Li & Chen Zhang, 2024. "An Urban Metro Section Flow Forecasting Method Combining Time Series Decomposition and a Generative Adversarial Network," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    17. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong & Sun, Qiming, 2020. "A hybrid short-term load forecasting model and its application in ground source heat pump with cooling storage system," Renewable Energy, Elsevier, vol. 161(C), pages 1244-1259.
    18. Joma Aldrini & Ines Chihi & Lilia Sidhom, 2024. "Fault diagnosis and self-healing for smart manufacturing: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2441-2473, August.
    19. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    20. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0339453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.