IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0322225.html
   My bibliography  Save this article

Application of a grey wolf optimization-enhanced convolutional neural network and bidirectional gated recurrent unit model for credit scoring prediction

Author

Listed:
  • Yetong Fang

Abstract

With the digital transformation of the financial industry, credit score prediction, as a key component of risk management, faces increasingly complex challenges. Traditional credit scoring methods often have difficulty in fully capturing the characteristics of large-scale, high-dimensional financial data, resulting in limited prediction performance. To address these issues, this paper proposes a credit score prediction model that combines CNNs and BiGRUs, and uses the GWO algorithm for hyperparameter tuning. CNN performs well in feature extraction and can effectively capture patterns in customer historical behaviors, while BiGRU is good at handling time dependencies, which further improves the prediction accuracy of the model. The GWO algorithm is introduced to further improve the overall performance of the model by optimizing key parameters. Experimental results show that the CNN-BiGRU-GWO model proposed in this paper performs well on multiple public credit score datasets, significantly improving the accuracy and efficiency of prediction. On the LendingClub loan dataset, the MAE of this model is 15.63, MAPE is 4.65%, RMSE is 3.34, and MSE is 12.01, which are 64.5%, 68.0%, 21.4%, and 52.5% lower than the traditional method plawiak of 44.07, 14.51%, 4.25, and 25.29, respectively. In addition, compared with traditional methods, this model also shows stronger advantages in adaptability and generalization ability. By integrating advanced technologies, this model not only provides an innovative technical solution for credit score prediction, but also provides valuable insights into the application of deep learning in the financial field, making up for the shortcomings of existing methods and demonstrating its potential for wide application in financial risk management.

Suggested Citation

  • Yetong Fang, 2025. "Application of a grey wolf optimization-enhanced convolutional neural network and bidirectional gated recurrent unit model for credit scoring prediction," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-24, May.
  • Handle: RePEc:plo:pone00:0322225
    DOI: 10.1371/journal.pone.0322225
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322225
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0322225&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0322225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0322225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.