IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0318485.html
   My bibliography  Save this article

Data-driven understanding on soccer team tactics and ranking trends: Elo rating-based trends on European soccer leagues

Author

Listed:
  • Dong Hee Jung
  • Jason J Jung

Abstract

In modern soccer, strategy and tactics significantly impact team success. In this study, the application of these methodologies within the domain of association soccer is examined, with a particular focus on predicting team strategies via team trend analysis. Using a dataset comprising matches from the top five European soccer leagues, we analyzed team performance trends over time using the Elo rating system and rolling regression. Predicting strategies from soccer match datasets is a challenging. In our study, we propose methods based on count and rank to address these challenges. For the count-based method, the number of forwards, midfielders, and defenders is used to calculate respective defense and attack scores. For the rank-based method, teams are classified into various levels based on their rankings, and strategies are evaluated accordingly. This approach provides a more detailed perspective on strategic tendencies by considering team composition and performance at each level. Experimental results demonstrate the potential of our proposed methods to accurately identify and predict team strategies, offering significant implications for tactical decision-making in professional soccer. The findings indicate that the accuracy of predicting defensive strategies using count-based predictions was approximately 85%, while the performance of predicting aggressive strategies through rank-based predictions was 89%. Our methodology can be extended to the development of a predictive model aimed at forecasting team strategies, thereby assisting coaches with more effective preparation for upcoming matches.

Suggested Citation

  • Dong Hee Jung & Jason J Jung, 2025. "Data-driven understanding on soccer team tactics and ranking trends: Elo rating-based trends on European soccer leagues," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-21, February.
  • Handle: RePEc:plo:pone00:0318485
    DOI: 10.1371/journal.pone.0318485
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318485
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318485&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0318485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Poojan Thakkar & Manan Shah, 2021. "An Assessment of Football Through the Lens of Data Science," Annals of Data Science, Springer, vol. 8(4), pages 823-836, December.
    2. Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Bose & Eberhard Feess & Helge Mueller, 2022. "Favoritism towards High-Status Clubs: Evidence from German Soccer," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 38(2), pages 422-478.
    2. Bruzzone, Octavio A. & Logarzo, Guillermo A. & Aguirre, María B. & Virla, Eduardo G., 2018. "Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics," Ecological Modelling, Elsevier, vol. 385(C), pages 114-123.
    3. Rakhal Das & Binod Chandra Tripathy, 2024. "Separation Axioms on Spatial Topological Space and Spatial Data Analysis," Annals of Data Science, Springer, vol. 11(2), pages 411-423, April.
    4. Robin Maximilian Stetzka & Stefan Winter, 2023. "How rational is gambling?," Journal of Economic Surveys, Wiley Blackwell, vol. 37(4), pages 1432-1488, September.
    5. Chowdhury, Subhasish M. & Jewell, Sarah & Singleton, Carl, 2024. "Can awareness reduce (and reverse) identity-driven bias in judgement? Evidence from international cricket," Journal of Economic Behavior & Organization, Elsevier, vol. 226(C).
    6. Csató, László, 2023. "How to avoid uncompetitive games? The importance of tie-breaking rules," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1260-1269.
    7. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    8. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    9. Maria Bolsinova & Gunter Maris & Abe D. Hofman & Han L. J. van der Maas & Matthieu J. S. Brinkhuis, 2022. "Urnings: A new method for tracking dynamically changing parameters in paired comparison systems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 91-118, January.
    10. Csató, László & Bodnár, Gergely, 2023. "Mérhetnénk jobban a csapatok erejét a Bajnokok Ligájában? Fontos megjegyzés az Európai Labdarúgó-szövetség számára [How to better measure team strength in the Champions League. An important message," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 813-827.
    11. Hua, Hsuan-Fu & Chang, Ching-Ju & Lin, Tse-Ching & Weng, Ruby Chiu-Hsing, 2024. "Rating players by Laplace’s approximation and dynamic modeling," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1152-1165.
    12. J. James Reade & Jan C. van Ours, 2024. "Consumer Perceptions Matter: A Case Study of an Anomaly in English Football," Economics Discussion Papers em-dp2024-03, Department of Economics, University of Reading.
    13. Sarah Jewell & J. James Reade & Carl Singleton, 2020. "It's Just Not Cricket: The Uncontested Toss and the Gentleman's Game," Economics Discussion Papers em-dp2020-10, Department of Economics, University of Reading.
    14. He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
    15. Roberto Gásquez & Vicente Royuela, 2016. "The Determinants of International Football Success: A Panel Data Analysis of the Elo Rating," Social Science Quarterly, Southwestern Social Science Association, vol. 97(2), pages 125-141, June.
    16. da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
    17. J. James Reade & Dominik Schreyer & Carl Singleton, 2022. "Eliminating supportive crowds reduces referee bias," Economic Inquiry, Western Economic Association International, vol. 60(3), pages 1416-1436, July.
    18. L.F.M. Groot & J. Ferwerda, 2014. "Soccer jersey sponsors and the world cup," Working Papers 14-07, Utrecht School of Economics.
    19. Ramirez, Philip & Reade, J. James & Singleton, Carl, 2023. "Betting on a buzz: Mispricing and inefficiency in online sportsbooks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1413-1423.
    20. Yamini Nekkanti & Dibyojyoti Bhattacharjee, 2020. "Novel Performance Metrics to Evaluate the Duel Between a Batsman and a Bowler," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 45(2), pages 201-211, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0318485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.