IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0317769.html
   My bibliography  Save this article

Coevolutionary dynamics in the grass-livestock social-ecological system of China’s alpine pastoral areas: A case study of the Qilian Mountains region in China

Author

Listed:
  • Ligan Cai
  • Junhao Zhao
  • Jian Chen

Abstract

Evaluating the dynamic co-evolution and feedback mechanisms within socio-ecological systems is crucial for determining the resilience and sustainability of environmental governance strategies. The grass-livestock system, as a complex entity encompassing livestock nutrition, foraging behavior, vegetation ecology, pastoralists’ economic income, and policy interventions, indicates that any change in a single element may trigger a chain reaction within the system. This paper uses a system dynamics approach to construct a simulation model of the grass-livestock system in alpine pastoral areas, simulating the long-term dynamic co-evolution of the socio-ecological system in the Qilian Mountains region of China. Four optimization schemes were proposed, and the synergistic development of the grass-livestock system in alpine pastoral areas under each scheme was simulated. The results show that, under the premise of sustainable use of grazing-based artificial grassland, the combination of reasonable use of fenced grasslands and cooperative management by pastoralists can effectively control livestock numbers, ensure pastoralists’ income, and maintain grassland quality within the next 20 years, thereby achieving coordinated socio-economic and ecological development. Additionally, optimizing feed supply can significantly improve grass production, livestock weight, and income. Therefore, it is recommended that alpine pastoral areas prioritize both grassland ecological management and development, adopt grassland restoration technologies, strengthen the management of artificial grasslands, set reasonable grazing bans, develop pastoralist cooperative organizations and design internal operational mechanisms.

Suggested Citation

  • Ligan Cai & Junhao Zhao & Jian Chen, 2025. "Coevolutionary dynamics in the grass-livestock social-ecological system of China’s alpine pastoral areas: A case study of the Qilian Mountains region in China," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-26, January.
  • Handle: RePEc:plo:pone00:0317769
    DOI: 10.1371/journal.pone.0317769
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317769
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0317769&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0317769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moore, A. D. & Donnelly, J. R. & Freer, M., 1997. "GRAZPLAN: Decision support systems for Australian grazing enterprises. III. Pasture growth and soil moisture submodels, and the GrassGro DSS," Agricultural Systems, Elsevier, vol. 55(4), pages 535-582, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    2. McPhee, Malcolm J. & Evered, Mark & Andrews, Todd & Pacheco, David & Dougherty, Holland C. & Ingham, Aaron B. & Harden, Steven & Crean, Jason & Roche, Leslie & Eastburn, Danny J. & Oltjen, James W. & , 2019. "Beef production simulation of nitrate and lipid supplements for pasture and rangeland fed enterprises," Agricultural Systems, Elsevier, vol. 170(C), pages 19-27.
    3. Graham, Phillip & Hatcher, Sue, 2006. "Achieving fat score targets: the costs and benefits," AFBM Journal, Australasian Farm Business Management Network, vol. 3(02), pages 1-14.
    4. Rebecca Darbyshire & Jason Crean & Michael Cashen & Muhuddin Rajin Anwar & Kim M Broadfoot & Marja Simpson & David H Cobon & Christa Pudmenzky & Louis Kouadio & Shreevatsa Kodur, 2020. "Insights into the value of seasonal climate forecasts to agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1034-1058, October.
    5. Corson, Michael S. & Alan Rotz, C. & Howard Skinner, R. & Sanderson, Matt A., 2007. "Adaptation and evaluation of the integrated farm system model to simulate temperate multiple-species pastures," Agricultural Systems, Elsevier, vol. 94(2), pages 502-508, May.
    6. Tas Thamo & Donkor Addai & Marit E. Kragt & Ross S. Kingwell & David J. Pannell & Michael J. Robertson, 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 841-865, October.
    7. Browne, Natalie & Kingwell, Ross S. & Behrendt, Ralph & Eckard, Richard, 2012. "Comparing the profitability of sheep, beef, dairy and grain farms in southwest Victoria under different rainfall scenarios," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124249, Australian Agricultural and Resource Economics Society.
    8. Browne, Natalie & Kingwell, Ross & Behrendt, Ralph & Eckard, Richard, 2013. "The relative profitability of dairy, sheep, beef and grain farm enterprises in southeast Australia under selected rainfall and price scenarios," Agricultural Systems, Elsevier, vol. 117(C), pages 35-44.
    9. Oomen, Roelof J. & Ewert, Frank & Snyman, Hennie A., 2016. "Modelling rangeland productivity in response to degradation in a semi-arid climate," Ecological Modelling, Elsevier, vol. 322(C), pages 54-70.
    10. Thomas, Dean T. & Jayasinghe, Sadeeka L. & Herrmann, Chris & Harrison, Robert J. & Flohr, Bonnie M. & Lawes, Roger A., 2025. "Hard-seeded annual pasture legume phases are a profitable and low risk option in mixed farming regions with low to medium rainfall," Agricultural Systems, Elsevier, vol. 226(C).
    11. Moore, A.D. & Holzworth, D.P. & Herrmann, N.I. & Huth, N.I. & Robertson, M.J., 2007. "The Common Modelling Protocol: A hierarchical framework for simulation of agricultural and environmental systems," Agricultural Systems, Elsevier, vol. 95(1-3), pages 37-48, December.
    12. Jones, Randall E. & Kemp, David R. & Michalk, David & Takahashi, Taro, 2008. "The on-farm impact of alternative grazing management options to improve sustainability in western Chinese grasslands," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6019, Australian Agricultural and Resource Economics Society.
    13. Tocker, Jonathon & Malcolm, Bill & Heard, J. & Sinnett, A. & Ho, C. & Behrendt, R., 2013. "Profit, cash, wealth and risk implications of changes to a prime lamb business in south-west Victoria," AFBM Journal, Australasian Farm Business Management Network, vol. 10, pages 1-27.
    14. Luedeling, Eike & Smethurst, Philip J. & Baudron, Frédéric & Bayala, Jules & Huth, Neil I. & van Noordwijk, Meine & Ong, Chin K. & Mulia, Rachmat & Lusiana, Betha & Muthuri, Catherine & Sinclair, Ferg, 2016. "Field-scale modeling of tree–crop interactions: Challenges and development needs," Agricultural Systems, Elsevier, vol. 142(C), pages 51-69.
    15. Kuehne, Geoff & Nicholson, Cam & Robertson, Michael & Llewellyn, Rick & McDonald, Cam, 2012. "Engaging project proponents in R&D evaluation using bio-economic and socio-economic tools," Agricultural Systems, Elsevier, vol. 108(C), pages 94-103.
    16. Bell, L.W. & Moore, A.D. & Thomas, D.T., 2021. "Diversified crop-livestock farms are risk-efficient in the face of price and production variability," Agricultural Systems, Elsevier, vol. 189(C).
    17. Andrew P. Smith, 2022. "Biophysical Simulation of Sheep Grazing Systems Using the SGS Pasture Model," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    18. Thomas, Dean T. & Flohr, Bonnie M. & Monjardino, Marta & Loi, Angelo & Llewellyn, Rick S. & Lawes, Roger A. & Norman, Hayley C., 2021. "Selecting higher nutritive value annual pasture legumes increases the profitability of sheep production," Agricultural Systems, Elsevier, vol. 194(C).
    19. Brown, Peter D. & Cochrane, Thomas A. & Krom, Thomas D., 2010. "Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing," Agricultural Water Management, Elsevier, vol. 97(6), pages 892-900, June.
    20. Lo, Yueh-Hsin & Blanco, Juan A. & Canals, Rosa M. & González de Andrés, Ester & San Emeterio, Leticia & Imbert, J. Bosco & Castillo, Federico J., 2015. "Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: A modeling approach," Ecological Modelling, Elsevier, vol. 312(C), pages 322-334.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0317769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.