IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315540.html
   My bibliography  Save this article

Profiling the AI speaker user: Machine learning insights into consumer adoption patterns

Author

Listed:
  • Yunwoo Choi
  • Changjun Lee

Abstract

The objective of this study is to identify the characteristics of users of AI speakers and predict potential consumers, with the aim of supporting effective advertising and marketing strategies in the fast-evolving media technology landscape. To do so, our analysis employs decision trees, random forests, support vector machines, artificial neural networks, and XGboost, which are typical machine learning techniques for classification and leverages the 2019 Media & Consumer Research survey data from the Korea Broadcasting and Advertising Corporation (N = 3,922). The final XGboost model, which performed the best among the other machine learning models, specifically forecasts individuals aged 45–50 and 60–65, who are active on social networking platforms and have a preference for varied programming content, as the most likely future users. Additionally, the model reveals their distinct lifestyle patterns, such as higher internet usage during weekdays and increased cable TV viewership on weekends, along with a better understanding of 5G technology. This pioneering effort in IoT consumer research employs advanced machine learning to not just predict, but intricately profile potential AI speaker consumers. It elucidates critical factors influencing technology uptake, including media consumption habits, attitudes, values, and leisure activities, providing valuable insights for creating focused and effective advertising and marketing strategies.

Suggested Citation

  • Yunwoo Choi & Changjun Lee, 2024. "Profiling the AI speaker user: Machine learning insights into consumer adoption patterns," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-23, December.
  • Handle: RePEc:plo:pone00:0315540
    DOI: 10.1371/journal.pone.0315540
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315540
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315540&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nico Neumann & Catherine E. Tucker & Timothy Whitfield, 2019. "Frontiers: How Effective Is Third-Party Consumer Profiling? Evidence from Field Studies," Marketing Science, INFORMS, vol. 38(6), pages 918-926, November.
    2. Ming Xing Wang & Ki Su Kim & Jeoung Kun Kim, 2023. "Investigating the Determinants of IoT Device Continuance Intentions: An Empirical Study of Smart Speakers Through the Lens of Expectation-Confirmation Theory," SAGE Open, , vol. 13(3), pages 21582440231, September.
    3. Ling, Hsiao-Chi & Chen, Hong-Ren & Ho, Kevin K.W. & Hsiao, Kuo-Lun, 2021. "Exploring the factors affecting customers’ intention to purchase a smart speaker," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    4. Elena Korneeva & Nina Olinder & Wadim Strielkowski, 2021. "Consumer Attitudes to the Smart Home Technologies and the Internet of Things (IoT)," Energies, MDPI, vol. 14(23), pages 1-15, November.
    5. K. Sudhir & Seung Yoon Lee & Subroto Roy, 2021. "Lookalike Targeting on Others' Journeys: Brand Versus Performance Marketing," Cowles Foundation Discussion Papers 2302R, Cowles Foundation for Research in Economics, Yale University, revised Jun 2022.
    6. Jaspers, Esther D.T. & Pearson, Erika, 2022. "Consumers’ acceptance of domestic Internet-of-Things: The role of trust and privacy concerns," Journal of Business Research, Elsevier, vol. 142(C), pages 255-265.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Affeldt, P. & Argentesi, E. & Filistrucchi, Lapo, 2021. "Estimating Demand with Multi-Homing in Two-Sided Markets," Other publications TiSEM 1317bf39-d02e-4f61-a34f-e, Tilburg University, School of Economics and Management.
    2. Shahzad, Khuram & Zhang, Qingyu & Zafar, Abaid Ullah & Ashfaq, Muhammad & Rehman, Shafique Ur, 2023. "The role of blockchain-enabled traceability, task technology fit, and user self-efficacy in mobile food delivery applications," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    3. Miller, Klaus M. & Skiera, Bernd, 2024. "Economic consequences of online tracking restrictions: Evidence from cookies," International Journal of Research in Marketing, Elsevier, vol. 41(2), pages 241-264.
    4. Cezar-Petre Simion & Cătălin-Alexandru Verdeș & Alexandra-Andreea Mironescu & Florin-Gabriel Anghel, 2023. "Digitalization in Energy Production, Distribution, and Consumption: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    5. Koski, Heli & Kässi, Otto & Braesemann, Fabian, 2020. "Killers on the Road of Emerging Start-ups – Implications for Market Entry and Venture Capital Financing," ETLA Working Papers 81, The Research Institute of the Finnish Economy.
    6. Giachino, Chiara & Nirino, Niccolò & Leonidou, Erasmia & Glyptis, Loukas, 2023. "eSport in the digital era: Exploring the moderating role of perceived usefulness on financial behavioural aspects within reward-crowdfunding," Journal of Business Research, Elsevier, vol. 155(PB).
    7. David A. Schweidel & Yakov Bart & J. Jeffrey Inman & Andrew T. Stephen & Barak Libai & Michelle Andrews & Ana Babić Rosario & Inyoung Chae & Zoey Chen & Daniella Kupor & Chiara Longoni & Felipe Thomaz, 2022. "How consumer digital signals are reshaping the customer journey," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1257-1276, November.
    8. Zhang, Yaqiong & Wang, Shifu, 2023. "The influence of anthropomorphic appearance of artificial intelligence products on consumer behavior and brand evaluation under different product types," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    9. Garrett Johnson & Julian Runge & Eric Seufert, 2022. "Privacy-Centric Digital Advertising: Implications for Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 9(1), pages 49-54, June.
    10. Joo, Mingyu & Kim, Seung Hyun & Ghose, Anindya & Wilbur, Kenneth C., 2023. "Designing Distributed Ledger technologies, like Blockchain, for advertising markets," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 12-21.
    11. Tesary Lin & Sanjog Misra, 2022. "Frontiers: The Identity Fragmentation Bias," Marketing Science, INFORMS, vol. 41(3), pages 433-440, May.
    12. Reviglio, Urbano, 2022. "The untamed and discreet role of data brokers in surveillance capitalism: A transnational and interdisciplinary overview," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 11(3), pages 1-27.
    13. Dang, Simon & Quach, Sara & Roberts, Robin E., 2025. "Explanation of time perspectives in adopting AI service robots under different service settings," Journal of Retailing and Consumer Services, Elsevier, vol. 82(C).
    14. Andre Veiga & Tommaso Valletti, 2020. "Attention, recall and purchase: Experimental evidence on online news and advertising," Working Papers 20-15, NET Institute.
    15. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    16. Park, Jeongeun & Yang, Donguk & Kim, Ha Young, 2023. "Text mining-based four-step framework for smart speaker product improvement and sales planning," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    17. Adu-Gyamfi, Gibbson & Song, Huaming & Nketiah, Emmanuel & Obuobi, Bright & Wu, Qin & Cudjoe, Dan, 2024. "Refueling convenience and range satisfaction in electric mobility: Investigating consumer willingness to use battery swap services for electric vehicles," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    18. Jaeyoung Jang & Beomsoo Kim, 2022. "The Impact of Potential Risks on the Use of Exploitable Online Communities: The Case of South Korean Cyber-Security Communities," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    19. Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
    20. Hu, Qian & Pan, Zhao, 2023. "Can AI benefit individual resilience? The mediation roles of AI routinization and infusion," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.