IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0313592.html
   My bibliography  Save this article

Investigation of alpha-glucosidase inhibition activity of Artabotrys sumatranus leaf extract using metabolomics, machine learning and molecular docking analysis

Author

Listed:
  • Dela Rosa
  • Berna Elya
  • Muhammad Hanafi
  • Alfi Khatib
  • Eka Budiarto
  • Syamsu Nur
  • Muhammad Imam Surya

Abstract

One way to treat diabetes mellitus type II is by using α-glucosidase inhibitor, that will slow down the postprandial glucose intake. Metabolomics analysis of Artabotrys sumatranus leaf extract was used in this research to predict the active compounds as α-glucosidase inhibitors from this extract. Both multivariate statistical analysis and machine learning approaches were used to improve the confidence of the predictions. After performance comparisons with other machine learning methods, random forest was chosen to make predictive model for the activity of the extract samples. Feature importance analysis (using random feature permutation and Shapley score calculation) was used to identify the predicted active compound as the important features that influenced the activity prediction of the extract samples. The combined analysis of multivariate statistical analysis and machine learning predicted 9 active compounds, where 6 of them were identified as mangiferin, neomangiferin, norisocorydine, apigenin-7-O-galactopyranoside, lirioferine, and 15,16-dihydrotanshinone I. The activities of norisocorydine, apigenin-7-O-galactopyranoside, and lirioferine as α-glucosidase inhibitors have not yet reported before. Molecular docking simulation, both to 3A4A (α-glucosidase enzyme from Saccharomyces cerevisiae, usually used in bioassay test) and 3TOP (a part of α-glucosidase enzyme in human gut) showed strong to very strong binding of the identified predicted active compounds to both receptors, with exception of neomangiferin which only showed strong binding to 3TOP receptor. Isolation based on bioassay guided fractionation further verified the metabolomics prediction by succeeding to isolate mangiferin from the extract, which showed strong α-glucosidase activity when subjected to bioassay test. The correlation analysis also showed a possibility of 3 groups in the predicted active compounds, which might be related to the biosynthesis pathway (need further research for verification). Another result from correlation analysis was that in general the α-glucosidase inhibition activity in the extract had strong correlation to antioxidant activity, which was also reflected in the predicted active compounds. Only one predicted compound had very low positive correlation to antioxidant activity.

Suggested Citation

  • Dela Rosa & Berna Elya & Muhammad Hanafi & Alfi Khatib & Eka Budiarto & Syamsu Nur & Muhammad Imam Surya, 2025. "Investigation of alpha-glucosidase inhibition activity of Artabotrys sumatranus leaf extract using metabolomics, machine learning and molecular docking analysis," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-32, January.
  • Handle: RePEc:plo:pone00:0313592
    DOI: 10.1371/journal.pone.0313592
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313592
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0313592&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0313592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LLC, vol. 20(1), pages 3-29, March.
    2. Antoniadis, Anestis & Lambert-Lacroix, Sophie & Poggi, Jean-Michel, 2021. "Random forests for global sensitivity analysis: A selective review," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
    2. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    3. Mehdi Dasineh & Amir Ghaderi & Mohammad Bagherzadeh & Mohammad Ahmadi & Alban Kuriqi, 2021. "Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods," Mathematics, MDPI, vol. 9(23), pages 1-24, December.
    4. Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
    5. Torii, André Jacomel & Novotny, Antonio André, 2021. "A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo Simulation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
    7. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," CEPR Discussion Papers 18543, C.E.P.R. Discussion Papers.
    9. Pilowsky, Julia A. & Manica, Andrea & Brown, Stuart & Rahbek, Carsten & Fordham, Damien A., 2022. "Simulations of human migration into North America are more sensitive to demography than choice of palaeoclimate model," Ecological Modelling, Elsevier, vol. 473(C).
    10. Ahmet Faruk Aysan & Bekir Sait Ciftler & Ibrahim Musa Unal, 2024. "Predictive Power of Random Forests in Analyzing Risk Management in Islamic Banking," JRFM, MDPI, vol. 17(3), pages 1-19, March.
    11. Sakiru Adebola Solarin & Muhammed Sehid Gorus & Onder Ozgur, 2024. "Modelling the economic effect of inbound birth tourism: a random forest algorithm approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4223-4240, October.
    12. Zhu, Xinyi & Shen, Xiaoyan & Chen, Kailiang & Zhang, Zeqing, 2024. "Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM," Energy, Elsevier, vol. 296(C).
    13. Murat Aslan & Onder Ozgur, 2024. "Financial dollarization and its effects on inflation and output in Turkey: a machine learning approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(6), pages 5777-5804, December.
    14. Maria A. F. Silva Dias & Yania Molina Souto & Bruno Biazeto & Enzo Todesco & Jose A. Zuñiga Mora & Dylana Vargas Navarro & Melvin Pérez Chinchilla & Carlos Madrigal Araya & Dayanna Arce Fernández & Be, 2024. "Reduction of Wind Speed Forecast Error in Costa Rica Tejona Wind Farm with Artificial Intelligence," Energies, MDPI, vol. 17(22), pages 1-12, November.
    15. Özer Depren & Mustafa Tevfik Kartal & Serpil Kılıç Depren, 2021. "Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
    16. Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
    17. Jialing Zhang & Zhanxu Chen & An Wang & Zhenzhang Li & Wei Wan, 2023. "Intelligent Personalized Lighting Control System for Residents," Sustainability, MDPI, vol. 15(21), pages 1-12, October.
    18. Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
    19. Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
    20. Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0313592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.