IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0299947.html
   My bibliography  Save this article

Development of short forms for screening children’s dental caries and urgent treatment needs using item response theory and machine learning methods

Author

Listed:
  • Di Xiong
  • Marvin Marcus
  • Carl A Maida
  • Yuetong Lyu
  • Ron D Hays
  • Yan Wang
  • Jie Shen
  • Vladimir W Spolsky
  • Steve Y Lee
  • James J Crall
  • Honghu Liu

Abstract

Objectives: Surveys can assist in screening oral diseases in populations to enhance the early detection of disease and intervention strategies for children in need. This paper aims to develop short forms of child-report and proxy-report survey screening instruments for active dental caries and urgent treatment needs in school-age children. Methods: This cross-sectional study recruited 497 distinct dyads of children aged 8–17 and their parents between 2015 to 2019 from 14 dental clinics and private practices in Los Angeles County. We evaluated responses to 88 child-reported and 64 proxy-reported oral health questions to select and calibrate short forms using Item Response Theory. Seven classical Machine Learning algorithms were employed to predict children’s active caries and urgent treatment needs using the short forms together with family demographic variables. The candidate algorithms include CatBoost, Logistic Regression, K-Nearest Neighbors (KNN), Naïve Bayes, Neural Network, Random Forest, and Support Vector Machine. Predictive performance was assessed using repeated 5-fold nested cross-validations. Results: We developed and calibrated four ten-item short forms. Naïve Bayes outperformed other algorithms with the highest median of cross-validated area under the ROC curve. The means of best testing sensitivities and specificities using both child-reported and proxy-reported responses were 0.84 and 0.30 for active caries, and 0.81 and 0.31 for urgent treatment needs respectively. Models incorporating both response types showed a slightly higher predictive accuracy than those relying on either child-reported or proxy-reported responses. Conclusions: The combination of Item Response Theory and Machine Learning algorithms yielded potentially useful screening instruments for both active caries and urgent treatment needs of children. The survey screening approach is relatively cost-effective and convenient when dealing with oral health assessment in large populations. Future studies are needed to further leverage the customize and refine the instruments based on the estimated item characteristics for specific subgroups of the populations to enhance predictive accuracy.

Suggested Citation

  • Di Xiong & Marvin Marcus & Carl A Maida & Yuetong Lyu & Ron D Hays & Yan Wang & Jie Shen & Vladimir W Spolsky & Steve Y Lee & James J Crall & Honghu Liu, 2024. "Development of short forms for screening children’s dental caries and urgent treatment needs using item response theory and machine learning methods," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-18, March.
  • Handle: RePEc:plo:pone00:0299947
    DOI: 10.1371/journal.pone.0299947
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299947
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0299947&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0299947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vanya Van Belle & Ben Van Calster & Sabine Van Huffel & Johan A K Suykens & Paulo Lisboa, 2016. "Explaining Support Vector Machines: A Color Based Nomogram," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-33, October.
    2. Man Hung & Eric S. Hon & Bianca Ruiz-Negron & Evelyn Lauren & Ryan Moffat & Weicong Su & Julie Xu & Jungweon Park & David Prince & Joseph Cheever & Frank W. Licari, 2020. "Exploring the Intersection between Social Determinants of Health and Unmet Dental Care Needs Using Deep Learning," IJERPH, MDPI, vol. 17(19), pages 1-13, October.
    3. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    4. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    5. Jackson, S.L. & Vann Jr, W.F. & Kotch, J.B. & Pahel, B.T. & Lee, J.Y., 2011. "Impact of poor oral health on children's school attendance and performance," American Journal of Public Health, American Public Health Association, vol. 101(10), pages 1900-1906.
    6. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    7. Tam Nguyen & Hae-Ra Han & Miyong Kim & Kitty Chan, 2014. "An Introduction to Item Response Theory for Patient-Reported Outcome Measurement," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 7(1), pages 23-35, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makariou, Despoina & Barrieu, Pauline & Chen, Yining, 2021. "A random forest based approach for predicting spreads in the primary catastrophe bond market," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 140-162.
    2. Makariou, Despoina & Barrieu, Pauline & Chen, Yining, 2021. "A random forest based approach for predicting spreads in the primary catastrophe bond market," LSE Research Online Documents on Economics 111529, London School of Economics and Political Science, LSE Library.
    3. Yazan F. Roumani, 2023. "Sports analytics in the NFL: classifying the winner of the superbowl," Annals of Operations Research, Springer, vol. 325(1), pages 715-730, June.
    4. Khan, Muhammad Asif & Segovia, Juan E.Trinidad & Bhatti, M.Ishaq & Kabir, Asif, 2023. "Corporate vulnerability in the US and China during COVID-19: A machine learning approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    5. Díaz, Santiago & Carta, José A. & Matías, José M., 2018. "Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques," Applied Energy, Elsevier, vol. 209(C), pages 455-477.
    6. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    7. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    8. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    9. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    10. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    11. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    12. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    13. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    14. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    15. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    16. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    17. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    18. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    19. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    20. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.