IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0290869.html
   My bibliography  Save this article

The roles of liquidity and delay in financial markets based on an optimal forecasting model

Author

Listed:
  • Guo-Hui Yang
  • Si-Qi Ma
  • Xiao-Dong Bian
  • Jiang-Cheng Li

Abstract

We investigate the roles of liquidity and delay in financial markets through our proposed optimal forecasting model. The efficiency and liquidity of the financial market are examined using stochastic models that incorporate information delay. Based on machine learning, we estimate the in-sample and out-of-sample forecasting price performances of the six proposed methods using the likelihood function and Bayesian methods, and the out-of-sample prediction performance is compared with the benchmark model ARIMA-GARCH. We discover that the forecasting price performance of the proposed simplified delay stochastic model is superior to that of the benchmark methods by the test methods of a variety of loss function, superior predictive ability test (SPA), Akaike information criterion (AIC), and Bayesian information criterion (BIC). Using data from the Chinese stock market, the best forecasting model assesses the efficiency and liquidity of the financial market while accounting for information delay and trade probability. The rise in trade probability and delay time affects the stability of the return distribution and raises the risk, according to stochastic simulation. The empirical findings show that empirical and best forecasting approaches are compatible, that company size and liquidity (delay time) have an inverse relationship, and that delay time and liquidity have a nonlinear relationship. The most efficient have optimal liquidity.

Suggested Citation

  • Guo-Hui Yang & Si-Qi Ma & Xiao-Dong Bian & Jiang-Cheng Li, 2023. "The roles of liquidity and delay in financial markets based on an optimal forecasting model," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-20, September.
  • Handle: RePEc:plo:pone00:0290869
    DOI: 10.1371/journal.pone.0290869
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290869
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0290869&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0290869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    2. Rolando Gonzales & Patricia Aranda & Joel Mendizabal, 2017. "A Bayesian Spatial Propensity Score Matching Evaluation of the Regional Impact of Micro-finance," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 9(2), pages 127-153, December.
    3. A. Verma & R. J. Buonocore & T. Di Matteo, 2019. "A cluster driven log-volatility factor model: a deepening on the source of the volatility clustering," Quantitative Finance, Taylor & Francis Journals, vol. 19(6), pages 981-996, June.
    4. Julio Guerrero & Maria del Carmen Galiano & Giuseppe Orlando, 2023. "Modeling COVID-19 pandemic with financial markets models: The case of Ja\'en (Spain)," Papers 2301.08803, arXiv.org.
    5. Fabrizio Lillo & Rosario N. Mantegna, 2000. "Variety and Volatility in Financial Markets," Papers cond-mat/0006065, arXiv.org.
    6. Daniel Traian PELE, 2012. "Estimating the probability of stock market crashes for Bucharest Stock Exchange using stable distributions," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(7(572)), pages 5-12, July.
    7. Jean-Philippe Bouchaud & Rama Cont, 1998. "A Langevin approach to stock market fluctuations and crashes," Science & Finance (CFM) working paper archive 500027, Science & Finance, Capital Fund Management.
    8. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    10. Giuseppe Orlando & Michele Bufalo, 2021. "Empirical Evidences on the Interconnectedness between Sampling and Asset Returns’ Distributions," Risks, MDPI, vol. 9(5), pages 1-35, May.
    11. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wei & Zhong, Guang-Yan & Li, Jiang-Cheng, 2022. "Stability of financial market driven by information delay and liquidity in delay agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    3. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    4. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    5. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    6. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    7. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    8. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    9. Giorgio Canarella & Stephen Pollard, 2007. "A switching ARCH (SWARCH) model of stock market volatility: some evidence from Latin America," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 54(4), pages 445-462, December.
    10. Jorge Caiado, 2004. "Modelling And Forecasting The Volatility Of The Portuguese Stock Index Psi-20," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 9(1), pages 3-21.
    11. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    12. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
    13. Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.
    14. Tzavalis, Elias & Wickens, M. R., 1995. "The persistence in volatility of the US term premium 1970-1986," Economics Letters, Elsevier, vol. 49(4), pages 381-389, October.
    15. Hammoudeh, Shawkat & Li, Huimin, 2008. "Sudden changes in volatility in emerging markets: The case of Gulf Arab stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 47-63.
    16. Abdinardo Moreira Barreto Oliveira & Anandadeep Mandal & Gabriel J. Power, 2024. "Impact of COVID-19 on Stock Indices Volatility: Long-Memory Persistence, Structural Breaks, or Both?," Annals of Data Science, Springer, vol. 11(2), pages 619-646, April.
    17. Rodrigo Moreira & Larissa Ferreira Rodrigues Moreira & Flávio Oliveira Silva, 2025. "Brazilian Selic Rate Forecasting with Deep Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1319-1339, March.
    18. Thomas Mikosch, 2004. "Is it really long memory we see in financial returns?," Econometrics 0412002, University Library of Munich, Germany.
    19. Andersen, Torben G. & Bollerslev, Tim & Cai, Jun, 2000. "Intraday and interday volatility in the Japanese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 107-130, June.
    20. Arbeláez, Harvey & Ruiz, Isabel, 2013. "Macroeconomic antecedents to U.S. investment in Latin America," Journal of Business Research, Elsevier, vol. 66(3), pages 439-447.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0290869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.