IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0281951.html
   My bibliography  Save this article

Investigating speed-safety association: Considering the unobserved heterogeneity and human factors mediation effects

Author

Listed:
  • Habibollah Nassiri
  • Seyed Iman Mohammadpour

Abstract

The relationship between mean speed and crash likelihood is unclear in the literature. The contradictory findings can be attributed to the masking effects of the confounding variables in this association. Moreover, the unobserved heterogeneity has almost been criticized as a reason behind the current inconclusive results. This research provides an effort to develop a model that analyzes the mean speed-crash frequency relationship by crash severity and type. Also, the confounding and mediation effects of the environment, driver, and traffic-related attributes have been considered. To this end, the loop detector and crash data were aggregated daily for rural multilane highways of Tehran province, Iran, covering two years, 2020–2021. The partial least squares path modeling (PLS-PM) was employed for crash causal analysis along with the finite mixture partial least squares (FIMIX-PLS) segmentation to account for potential unobserved heterogeneity between observations. The mean speed was negatively and positively associated with the frequency of property damage-only (PDO) and severe accidents, respectively. Moreover, driver-related variables, including tailgating, distracted driving, and speeding, played key mediation roles in associating traffic and environmental factors with the crash risk. The higher the mean speed and the lower the traffic volume, the higher odds of distracted driving. Distracted driving was, in turn, associated with the higher vulnerable road users (VRU) accidents and single-vehicle accidents, triggering a higher frequency of severe accidents. Moreover, lower mean speed and higher traffic volume were positively correlated with the percentage of tailgating violations, which, in turn, predicted multi-vehicle accidents as the main predictor of PDO crash frequency. In conclusion, the mean speed effects on the crash risk are entirely different for each crash type through distinct crash mechanisms. Hence, the distinct distribution of crash types in different datasets might have led to current inconsistent results in the literature.

Suggested Citation

  • Habibollah Nassiri & Seyed Iman Mohammadpour, 2023. "Investigating speed-safety association: Considering the unobserved heterogeneity and human factors mediation effects," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-26, February.
  • Handle: RePEc:plo:pone00:0281951
    DOI: 10.1371/journal.pone.0281951
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281951
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0281951&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0281951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carina Goldbach & Deniz Kayar & Thomas Pitz & Jörn Sickmann, 2022. "Driving, Fast and Slow: An Experimental Investigation of Speed Choice and Information," SAGE Open, , vol. 12(2), pages 21582440221, April.
    2. Carsten Hahn & Michael D. Johnson & Andreas Herrmann & Frank Huber, 2002. "Capturing Customer Heterogeneity Using A Finite Mixture Pls Approach," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 54(3), pages 243-269, July.
    3. Venkatram Ramaswamy & Wayne S. Desarbo & David J. Reibstein & William T. Robinson, 1993. "An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data," Marketing Science, INFORMS, vol. 12(1), pages 103-124.
    4. Marko Sarstedt & Jan-Michael Becker & Christian M. Ringle & Manfred Schwaiger, 2011. "Uncovering and Treating Unobserved Heterogeneity with FIMIX-PLS: Which Model Selection Criterion Provides an Appropriate Number of Segments?," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 63(1), pages 34-62, January.
    5. Reinartz, Werner & Haenlein, Michael & Henseler, Jörg, 2009. "An empirical comparison of the efficacy of covariance-based and variance-based SEM," International Journal of Research in Marketing, Elsevier, vol. 26(4), pages 332-344.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    2. Sarstedt, Marko & Wilczynski, Petra & Melewar, T.C., 2013. "Measuring reputation in global markets—A comparison of reputation measures’ convergent and criterion validities," Journal of World Business, Elsevier, vol. 48(3), pages 329-339.
    3. Ringle, Christian M. & Sarstedt, Marko & Schlittgen, Rainer & Taylor, Charles R., 2013. "PLS path modeling and evolutionary segmentation," Journal of Business Research, Elsevier, vol. 66(9), pages 1318-1324.
    4. Sarstedt, Marko & Ringle, Christian M. & Smith, Donna & Reams, Russell & Hair, Joseph F., 2014. "Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers," Journal of Family Business Strategy, Elsevier, vol. 5(1), pages 105-115.
    5. Valentin Niță & Ioana Guțu, 2023. "The Role of Leadership and Digital Transformation in Higher Education Students’ Work Engagement," IJERPH, MDPI, vol. 20(6), pages 1-32, March.
    6. Marko Sarstedt & Christian M Ringle & Jun-Hwa Cheah & Hiram Ting & Ovidiu I Moisescu & Lacramioara Radomir, 2020. "Structural model robustness checks in PLS-SEM," Tourism Economics, , vol. 26(4), pages 531-554, June.
    7. Fiedler, Marina & Sarstedt, Marko, 2014. "Influence of community design on user behaviors in online communities," Journal of Business Research, Elsevier, vol. 67(11), pages 2258-2268.
    8. Muhammad Irfan & Raima Adeel & Muhammad Shaukat Malik, 2023. "The Impact of Emotional Finance, and Market Knowledge and Investor Protection on Investment Performance in Stock and Real Estate Markets," SAGE Open, , vol. 13(4), pages 21582440231, November.
    9. Pundziene, Asta & Sermontyte-Baniule, Rima & Rialp-Criado, Josep & Chesbrough, Henry, 2023. "Indirect effect of open innovation on clinical and economic value creation in digital healthcare: A comparative study of European countries," Journal of Business Research, Elsevier, vol. 159(C).
    10. Sarstedt, Marko & Radomir, Lăcrămioara & Moisescu, Ovidiu Ioan & Ringle, Christian M., 2022. "Latent class analysis in PLS-SEM: A review and recommendations for future applications," Journal of Business Research, Elsevier, vol. 138(C), pages 398-407.
    11. Dafna Kariv & Carlo Giglio & Vincenzo Corvello, 2025. "Fostering Entrepreneurial intentions: exploring the interplay of education and endogenous factors," International Entrepreneurship and Management Journal, Springer, vol. 21(1), pages 1-27, December.
    12. Christian Nitzl & Wynne W. Chin, 2017. "The case of partial least squares (PLS) path modeling in managerial accounting research," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 28(2), pages 137-156, May.
    13. Rafael Robina-Ramírez & Antonio Fernández-Portillo & Juan Carlos Díaz-Casero, 2019. "Green Start-Ups’ Attitudes towards Nature When Complying with the Corporate Law," Complexity, Hindawi, vol. 2019, pages 1-17, February.
    14. Marko Sarstedt & Jun-Hwa Cheah, 2019. "Partial least squares structural equation modeling using SmartPLS: a software review," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 196-202, September.
    15. Mengyuan Qiu & Ji Sha & Sulistyo Utomo, 2020. "Listening to Forests: Comparing the Perceived Restorative Characteristics of Natural Soundscapes before and after the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    16. Joti kumari & Jai Kumar, 2023. "Influence of motivation on teachers’ job performance," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    17. Schlägel, Christopher & Sarstedt, Marko, 2016. "Assessing the measurement invariance of the four-dimensional cultural intelligence scale across countries: A composite model approach," European Management Journal, Elsevier, vol. 34(6), pages 633-649.
    18. Becker, Jan-Michael & Ismail, Ida Rosnita, 2016. "Accounting for sampling weights in PLS path modeling: Simulations and empirical examples," European Management Journal, Elsevier, vol. 34(6), pages 606-617.
    19. Kleinaltenkamp, Michael & Minculescu, Ioana & Raithel, Sascha, 2017. "Customization of B2B Services: Measurement and Impact on Firm Performance," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 1(1), pages 39-56.
    20. Ringle, Christian M., 2006. "Segmentation for path models and unobserved heterogeneity: The finite mixture partial least squares approach," MPRA Paper 10734, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0281951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.