IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0280503.html
   My bibliography  Save this article

Long-term temporal evolution of extreme temperature in a warming Earth

Author

Listed:
  • Justus Contzen
  • Thorsten Dickhaus
  • Gerrit Lohmann

Abstract

We present a new approach to modeling the future development of extreme temperatures globally and on the time-scale of several centuries by using non-stationary generalized extreme value distributions in combination with logistic functions. The statistical models we propose are applied to annual maxima of daily temperature data from fully coupled climate models spanning the years 1850 through 2300. They enable us to investigate how extremes will change depending on the geographic location not only in terms of the magnitude, but also in terms of the timing of the changes. We find that in general, changes in extremes are stronger and more rapid over land masses than over oceans. In addition, our statistical models allow for changes in the different parameters of the fitted generalized extreme value distributions (a location, a scale and a shape parameter) to take place independently and at varying time periods. Different statistical models are presented and the Bayesian Information Criterion is used for model selection. It turns out that in most regions, changes in mean and variance take place simultaneously while the shape parameter of the distribution is predicted to stay constant. In the Arctic region, however, a different picture emerges: There, climate variability is predicted to increase rather quickly in the second half of the twenty-first century, probably due to the melting of ice, whereas changes in the mean values take longer and come into effect later.

Suggested Citation

  • Justus Contzen & Thorsten Dickhaus & Gerrit Lohmann, 2023. "Long-term temporal evolution of extreme temperature in a warming Earth," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-30, February.
  • Handle: RePEc:plo:pone00:0280503
    DOI: 10.1371/journal.pone.0280503
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280503
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0280503&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0280503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clément Dombry & Mathieu Ribatet & Stilian Stoev, 2018. "Probabilities of Concurrent Extremes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1565-1582, October.
    2. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    5. Brian C. O'Neill & Michael Oppenheimer & Rachel Warren & Stephane Hallegatte & Robert E. Kopp & Hans O. Pörtner & Robert Scholes & Joern Birkmann & Wendy Foden & Rachel Licker & Katharine J. Mach & Ph, 2017. "IPCC reasons for concern regarding climate change risks," Nature Climate Change, Nature, vol. 7(1), pages 28-37, January.
    6. Köne, Aylin Çigdem & Büke, Tayfun, 2010. "Forecasting of CO2 emissions from fuel combustion using trend analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2906-2915, December.
    7. Markku Rummukainen, 2013. "Climate change: changing means and changing extremes," Climatic Change, Springer, vol. 121(1), pages 3-13, November.
    8. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    9. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    10. David García-León & Ana Casanueva & Gabriele Standardi & Annkatrin Burgstall & Andreas D. Flouris & Lars Nybo, 2021. "Current and projected regional economic impacts of heatwaves in Europe," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    2. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2019. "Social Cost of Carbon under stochastic tipping points: when does risk play a role?," Working Papers hal-02408904, HAL.
    3. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
    4. Ding, Qi & Xiao, Xinping & Kong, Dekai, 2023. "Estimating energy-related CO2 emissions using a novel multivariable fuzzy grey model with time-delay and interaction effect characteristics," Energy, Elsevier, vol. 263(PE).
    5. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    6. Behçet, Rasim & Oktay, Hasan & Çakmak, Abdulvahap & Aydin, Hüseyin, 2015. "Comparison of exhaust emissions of biodiesel–diesel fuel blends produced from animal fats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 157-165.
    7. Ming Meng & Wei Shang & Xinfang Wang & Tingting Pang, 2020. "When will China fulfill its carbon‐related intended nationally determined contributions? An in‐depth environmental Kuznets curve analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1039-1049, October.
    8. Resende, Nicole Costa & Miranda, Jarbas Honório & Cooke, Richard & Chu, Maria L. & Chou, Sin Chan, 2019. "Impacts of regional climate change on the runoff and root water uptake in corn crops in Parana, Brazil," Agricultural Water Management, Elsevier, vol. 221(C), pages 556-565.
    9. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    10. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    11. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    12. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    13. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    14. Diebold, Francis X. & Rudebusch, Glenn D., 2023. "Climate models underestimate the sensitivity of Arctic sea ice to carbon emissions," Energy Economics, Elsevier, vol. 126(C).
    15. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    16. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    17. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    18. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    19. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    20. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0280503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.