IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278835.html
   My bibliography  Save this article

Hybrid fuzzy inference rules of descent method and wavelet function for volatility forecasting

Author

Listed:
  • Abdullah H Alenezy
  • Mohd Tahir Ismail
  • Jamil J Jaber
  • S AL Wadi
  • Rami S Alkhawaldeh

Abstract

This research employs the gradient descent learning (FIR.DM) approach as a learning process in a nonlinear spectral model of maximum overlapping discrete wavelet transform (MODWT) to improve volatility prediction of daily stock market prices using Saudi Arabia’s stock exchange (Tadawul) data. The MODWT comprises five mathematical functions and fuzzy inference rules. The inputs are the oil price (Loil) and repo rate (Repo) according to multiple regression correlation, and the Engle and Granger Causality test Engle RF, (1987). The logarithm of the stock market price (LSCS) in Tadawul reflects the output variable. The correlation matrix reveals that there is no collinearity between the input variables, and the causality test demonstrates that the input variables significantly influence the outcome variable. According to the multiple regression, there is a substantial negative influence between Loil and LSCS but a significant positive effect between Repo and output. For the 80% dataset under ME (0.000005), MAE (0.003214), and MAPE (0.064497), the MODWT-LA8 (ARIMA(1,1,0) with drift) for the LSCS variable performs better than other WT functions. In the novel hybrid model MODWT-FIR.DM, each function’s approximation coefficient (LSCS) is applied with input variables (Loil and Repo). We evaluate the performance of the proposed model (MODWT-LA8-FIR.DM) using different statistical measures (ME, RMSE, MAE, MPE) and compare it to two established models: the original FIR.DM and other MODWT-FIR.DM functions for forecasting 20% of datasets. The outcomes show that the MODWT-LA8-FIR.DM performs better than the traditional models based on lower ME (3.167586), RMSE (3.167638), MAE (3.167586), and MPE (80.860849). The proposed hybrid model may be a potential stock market forecasting model.

Suggested Citation

  • Abdullah H Alenezy & Mohd Tahir Ismail & Jamil J Jaber & S AL Wadi & Rami S Alkhawaldeh, 2022. "Hybrid fuzzy inference rules of descent method and wavelet function for volatility forecasting," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-18, December.
  • Handle: RePEc:plo:pone00:0278835
    DOI: 10.1371/journal.pone.0278835
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278835
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278835&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    2. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    3. Shruthi Murali & S. Thiyagarajan & Naresh Gopal, 2021. "Oil prices and stock market interplay in Dubai," International Journal of Management Practice, Inderscience Enterprises Ltd, vol. 14(1), pages 107-127.
    4. Nurul Aityqah Yaacob & Jamil J. Jaber & Dharini Pathmanathan & Sadam Alwadi & Ibrahim Mohamed, 2021. "Hybrid of the Lee-Carter Model with Maximum Overlap Discrete Wavelet Transform Filters in Forecasting Mortality Rates," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
    5. Aastha KHERA & Dr. Miklesh Prasad YADAV, 2020. "Predicting the volatility in stock return of emerging economy: An empirical approach," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(625), W), pages 233-244, Winter.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    2. Michis Antonis A, 2009. "Regression Analysis of Marketing Time Series: A Wavelet Approach with Some Frequency Domain Insights," Review of Marketing Science, De Gruyter, vol. 7(1), pages 1-43, July.
    3. Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," LSE Research Online Documents on Economics 54934, London School of Economics and Political Science, LSE Library.
    4. Deniz Erdemlioglu & Nikola Gradojevic, 2021. "Heterogeneous investment horizons, risk regimes, and realized jumps," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 617-643, January.
    5. Andersson, Fredrik N.G. & Edgerton, David L. & Opper, Sonja, 2013. "A Matter of Time: Revisiting Growth Convergence in China," World Development, Elsevier, vol. 45(C), pages 239-251.
    6. Bilgili, Faik & Mugaloglu, Erhan & Koçak, Emrah, 2018. "The impact of oil prices on CO2 emissions in China: A Wavelet coherence approach," MPRA Paper 90170, University Library of Munich, Germany.
    7. Marco Gallegati & Mauro Gallegati, 2005. "Wavelet variance and correlation analyses of output in G7 countries," Macroeconomics 0512017, University Library of Munich, Germany.
    8. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    9. Yushu Li & Fredrik N. G. Andersson, 2021. "A simple wavelet-based test for serial correlation in panel data models," Empirical Economics, Springer, vol. 60(5), pages 2351-2363, May.
    10. Andrikopoulos, Andreas & Merika, Anna & Stoupos, Nikolaos, 2025. "The effect of oil prices on the US shipping stock prices: The mediating role of freight rates and economic indicators," Journal of Commodity Markets, Elsevier, vol. 38(C).
    11. Dimitrios Panagiotou & Athanassios Stavrakoudis, 2023. "Price dependence among the major EU extra virgin olive oil markets: a time scale analysis," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(1), pages 1-26, March.
    12. Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
    13. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    14. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    15. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    16. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    18. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    19. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    20. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    21. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.