The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0262734
Download full text from publisher
References listed on IDEAS
- Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Hafiz Shahbaz Munir & Shengbing Ren & Mubashar Mustafa & Chaudry Naeem Siddique & Shazib Qayyum, 2021. "Attention based GRU-LSTM for software defect prediction," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
- Yi-Chung Hu, 2017. "A genetic-algorithm-based remnant grey prediction model for energy demand forecasting," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-11, October.
- Yanhui Guo & Yi Feng & Fuli Qu & Li Zhang & Bingyu Yan & Jingjing Lv, 2020. "Prediction of hepatitis E using machine learning models," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-12, September.
- Peng Zhang & Xin Ma & Kun She, 2019. "A novel power-driven fractional accumulated grey model and its application in forecasting wind energy consumption of China," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-33, December.
- Yan-Ling Zheng & Li-Ping Zhang & Xue-Liang Zhang & Kai Wang & Yu-Jian Zheng, 2015. "Forecast Model Analysis for the Morbidity of Tuberculosis in Xinjiang, China," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
- Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
- Ya-wen Wang & Zhong-zhou Shen & Yu Jiang, 2018. "Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-11, September.
- Wudi Wei & Junjun Jiang & Hao Liang & Lian Gao & Bingyu Liang & Jiegang Huang & Ning Zang & Yanyan Liao & Jun Yu & Jingzhen Lai & Fengxiang Qin & Jinming Su & Li Ye & Hui Chen, 2016. "Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
- Yu-Wei Lin & Yuqian Zhou & Faraz Faghri & Michael J Shaw & Roy H Campbell, 2019. "Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-22, July.
- Xiaojun Guo & Sifeng Liu & Lifeng Wu & Lingling Tang, 2014. "Application of a Novel Grey Self-Memory Coupling Model to Forecast the Incidence Rates of Two Notifiable Diseases in China: Dysentery and Gonorrhea," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
- Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder & Makkhan, Sidhu Jitendra Singh, 2020. "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rui Zhang & Hejia Song & Qiulan Chen & Yu Wang & Songwang Wang & Yonghong Li, 2022. "Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
- Luo, Xilin & Duan, Huiming & Xu, Kai, 2021. "A novel grey model based on traditional Richards model and its application in COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
- Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
- Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder, 2025. "Development of multi-forecasting model using Monte Carlo simulation coupled with wavelet denoising-ARIMA model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 230(C), pages 517-540.
- Md Siddikur Rahman & Arman Hossain Chowdhury & Miftahuzzannat Amrin, 2022. "Accuracy comparison of ARIMA and XGBoost forecasting models in predicting the incidence of COVID-19 in Bangladesh," PLOS Global Public Health, Public Library of Science, vol. 2(5), pages 1-13, May.
- Tassallah Abdullahi & Geoff Nitschke & Neville Sweijd, 2022. "Predicting diarrhoea outbreaks with climate change," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-18, April.
- Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
- Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Jiang, P. & Liu, X., 2016. "Hidden Markov model for municipal waste generation forecasting under uncertainties," European Journal of Operational Research, Elsevier, vol. 250(2), pages 639-651.
- You-Shyang Chen & Arun Kumar Sangaiah & Yu-Pei Lin, 2024. "Hyperautomation on fuzzy data dredging on four advanced industrial forecasting models to support sustainable business management," Annals of Operations Research, Springer, vol. 342(1), pages 215-264, November.
- Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
- Emre Demir, 2022. "Weiszfeld, tree-seed, and whale optimization algorithms comparison via locating transportation facilities with weightings considering the vulnerability and uncertainty," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-25, June.
- Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
- Yanbin Li & Zhen Li, 2019. "Forecasting of Coal Demand in China Based on Support Vector Machine Optimized by the Improved Gravitational Search Algorithm," Energies, MDPI, vol. 12(12), pages 1-20, June.
- Wudi Wei & Junjun Jiang & Hao Liang & Lian Gao & Bingyu Liang & Jiegang Huang & Ning Zang & Yanyan Liao & Jun Yu & Jingzhen Lai & Fengxiang Qin & Jinming Su & Li Ye & Hui Chen, 2016. "Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
- Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
- Song, Yuxin & Duan, Huiming & Cheng, Yunlong, 2024. "A novel fractional-order grey Euler prediction model and its application in short-term traffic flow," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
- Claudiu-Ionuţ Popîrlan & Irina-Valentina Tudor & Constantin-Cristian Dinu & Gabriel Stoian & Cristina Popîrlan & Daniela Dănciulescu, 2021. "Hybrid Model for Unemployment Impact on Social Life," Mathematics, MDPI, vol. 9(18), pages 1-19, September.
- Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.