Country-level pandemic risk and preparedness classification based on COVID-19 data: A machine learning approach
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0241332
Download full text from publisher
References listed on IDEAS
- Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
- Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021.
"Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
- Ali Hortaçsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: an Application to COVID-19," NBER Working Papers 27028, National Bureau of Economic Research, Inc.
- Ali Hortacsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: an Application to COVID-19," CeMMAP working papers CWP21/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ali Hortaçsu & Jiarui Liu & Timothy Schwieg, 2020. "Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: An Application to COVID-19," Working Papers 2020-37, Becker Friedman Institute for Research In Economics.
- Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
- Zhiyuan Ma & Ping Wang & Zehui Gao & Ruobing Wang & Koroush Khalighi, 2018. "Ensemble of machine learning algorithms using the stacked generalization approach to estimate the warfarin dose," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-12, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Amalraj Irudayasamy & D. Ganesh & M. Natesh & N. Rajesh & Umi Salma, 2024. "Big data analytics on the impact of OMICRON and its influence on unvaccinated community through advanced machine learning concepts," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(1), pages 346-355, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Noureddine Ouerfelli & Narcisa Vrinceanu & Diana Coman & Adriana Lavinia Cioca, 2022. "Empirical Modeling of COVID-19 Evolution with High/Direct Impact on Public Health and Risk Assessment," IJERPH, MDPI, vol. 19(6), pages 1-13, March.
- Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
- Cem Cakmakli & Yasin Simsek, 2020.
"Bridging the COVID-19 Data and the Epidemiological Model using Time Varying Parameter SIRD Model,"
Papers
2007.02726, arXiv.org, revised Feb 2021.
- Cem Cakmakli & Yasin Simsek, 2021. "Bridging the COVID-19 Data and the Epidemiological Model using Time Varying Parameter SIRD Model," Koç University-TUSIAD Economic Research Forum Working Papers 2013, Koc University-TUSIAD Economic Research Forum.
- Cem Cakmaklı & Yasin Simsek, 2020. "Bridging the COVID-19 Data and the Epidemiological Model using Time Varying Parameter SIRD Model," Working Paper series 20-23, Rimini Centre for Economic Analysis, revised Feb 2021.
- Nathan H. Schumaker & Sydney M. Watkins, 2021. "Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA," Land, MDPI, vol. 10(4), pages 1-13, April.
- Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
- Giacomo De Nicola & Marc Schneble & Göran Kauermann & Ursula Berger, 2022. "Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19 infections," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 407-426, September.
- Cem Cakmakli & Yasin Simsek, 2023. "Bridging the Covid-19 Data and the Epidemiological Model using Time-Varying Parameter SIRD Model," Papers 2301.13692, arXiv.org.
- Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Waychal, Nachiketas & Laha, Arnab Kumar & Sinha, Ankur, 2022. "Customized forecasting with Adaptive Ensemble Generator," IIMA Working Papers WP 2022-06-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Dante Miller & Jong-Min Kim, 2021. "Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies," JRFM, MDPI, vol. 14(10), pages 1-10, October.
- Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
- František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
- Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
- Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
- Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
- Robert S. Pindyck, 2020. "COVID-19 and the Welfare Effects of Reducing Contagion," NBER Working Papers 27121, National Bureau of Economic Research, Inc.
- David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022.
"Testing and Reopening in an SEIR Model,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
- David Berger & Kyle Herkenhoff & Simon Mongey, 2020. "An SEIR Infectious Disease Model with Testing and Conditional Quarantine," Working Papers 2020-017, Human Capital and Economic Opportunity Working Group.
- David Berger & Kyle Herkenhoff & Simon Mongey, 2020. "An SEIR Infectious Disease Model with Testing and Conditional Quarantine," Working Papers 2020-25, Becker Friedman Institute for Research In Economics.
- David W. Berger & Kyle F. Herkenhoff & Simon Mongey, 2020. "An SEIR Infectious Disease Model with Testing and Conditional Quarantine," NBER Working Papers 26901, National Bureau of Economic Research, Inc.
- David W. Berger & Kyle F. Herkenhoff & Simon Mongey, 2020. "An SEIR Infectious Disease Model with Testing and Conditional Quarantine," Staff Report 597, Federal Reserve Bank of Minneapolis.
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0241332. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.