IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i13p4693-d378124.html
   My bibliography  Save this article

Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines

Author

Listed:
  • Konstantinos Demertzis

    (Laboratory of Complex Systems, Department of Physics, Faculty of Sciences, International Hellenic University, Kavala Campus, 65404 St. Loukas, Greece)

  • Dimitrios Tsiotas

    (Laboratory of Complex Systems, Department of Physics, Faculty of Sciences, International Hellenic University, Kavala Campus, 65404 St. Loukas, Greece
    Department of Regional and Economic Development, Agricultural University of Athens, Greece, Nea Poli, 33100 Amfissa, Greece
    Department of Planning and Regional Development, University of Thessaly, Pedion Areos, 38334 Volos, Greece)

  • Lykourgos Magafas

    (Laboratory of Complex Systems, Department of Physics, Faculty of Sciences, International Hellenic University, Kavala Campus, 65404 St. Loukas, Greece)

Abstract

Within the complex framework of anti-COVID-19 health management, where the criteria of diagnostic testing, the availability of public-health resources and services, and the applied anti-COVID-19 policies vary between countries, the reliability and accuracy in the modeling of temporal spread can prove to be effective in the worldwide fight against the disease. This paper applies an exploratory time-series analysis to the evolution of the disease in Greece, which currently suggests a success story of COVID-19 management. The proposed method builds on a recent conceptualization of detecting connective communities in a time-series and develops a novel spline regression model where the knot vector is determined by the community detection in the complex network. Overall, the study contributes to the COVID-19 research by proposing a free of disconnected past-data and reliable framework of forecasting, which can facilitate decision-making and management of the available health resources.

Suggested Citation

  • Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4693-:d:378124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/13/4693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/13/4693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    2. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Spena & Leonardo Palombi & Massimo Corcione & Alessandro Quintino & Mariachiara Carestia & Vincenzo Andrea Spena, 2020. "Predicting SARS-CoV-2 Weather-Induced Seasonal Virulence from Atmospheric Air Enthalpy," IJERPH, MDPI, vol. 17(23), pages 1-14, December.
    2. Lakshman S. Thakur & Mikhail A. Bragin, 2021. "Data Interpolation by Near-Optimal Splines with Free Knots Using Linear Programming," Mathematics, MDPI, vol. 9(10), pages 1-12, May.
    3. Raúl Jiménez-Cruz & José-Luis Velázquez-Rodríguez & Itzamá López-Yáñez & Yenny Villuendas-Rey & Cornelio Yáñez-Márquez, 2021. "Supervised Classification of Diseases Based on an Improved Associative Algorithm," Mathematics, MDPI, vol. 9(13), pages 1-25, June.
    4. Yiannis Contoyiannis & Stavros G. Stavrinides & Michael P. Hanias & Myron Kampitakis & Pericles Papadopoulos & Rodrigo Picos & Stelios M. Potirakis, 2020. "A Universal Physics-Based Model Describing COVID-19 Dynamics in Europe," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    5. Dunfrey Pires Aragão & Davi Henrique dos Santos & Adriano Mondini & Luiz Marcos Garcia Gonçalves, 2021. "National Holidays and Social Mobility Behaviors: Alternatives for Forecasting COVID-19 Deaths in Brazil," IJERPH, MDPI, vol. 18(21), pages 1-24, November.
    6. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordan J Bird & Chloe M Barnes & Cristiano Premebida & Anikó Ekárt & Diego R Faria, 2020. "Country-level pandemic risk and preparedness classification based on COVID-19 data: A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    2. Giacomo De Nicola & Marc Schneble & Göran Kauermann & Ursula Berger, 2022. "Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19 infections," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 407-426, September.
    3. Noureddine Ouerfelli & Narcisa Vrinceanu & Diana Coman & Adriana Lavinia Cioca, 2022. "Empirical Modeling of COVID-19 Evolution with High/Direct Impact on Public Health and Risk Assessment," IJERPH, MDPI, vol. 19(6), pages 1-13, March.
    4. Nathan H. Schumaker & Sydney M. Watkins, 2021. "Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA," Land, MDPI, vol. 10(4), pages 1-13, April.
    5. Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    6. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Waychal, Nachiketas & Laha, Arnab Kumar & Sinha, Ankur, 2022. "Customized forecasting with Adaptive Ensemble Generator," IIMA Working Papers WP 2022-06-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    9. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    11. Pau Fonseca i Casas & Joan Garcia i Subirana & Víctor García i Carrasco & Xavier Pi i Palomés, 2021. "SARS-CoV-2 Spread Forecast Dynamic Model Validation through Digital Twin Approach, Catalonia Case Study," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    12. Brototi Biswas & Ketan Das & Debashis Saikia & Pradip Chouhan, 2024. "COVID-19 Hotspot Mapping and Prediction in Aizawl District of Mizoram: a Hotspot and SEIR Model-Based Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 1-26, February.
    13. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    14. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Musa Ganaka Kubi & Son-Allah Mallaka Philemon & Olope Ganiu Ibrahim, 2020. "Forecasting the Confirmed Cases of COVID-19 in Selected West African Countries Using ARIMA Model Technique," International Journal of Research and Innovation in Applied Science, International Journal of Research and Innovation in Applied Science (IJRIAS), vol. 5(8), pages 141-144, August.
    16. Umar Albalawi & Mohammed Mustafa, 2022. "Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    17. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    18. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2020. "An Economic Model of Health-vs-Wealth Prioritization During COVID-19: Optimal Lockdown, Network Centrality, and Segregation," Working Papers 2009E Classification-E61,, University of Ottawa, Department of Economics.
    19. Emrah Gecili & Assem Ziady & Rhonda D Szczesniak, 2021. "Forecasting COVID-19 confirmed cases, deaths and recoveries: Revisiting established time series modeling through novel applications for the USA and Italy," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-11, January.
    20. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4693-:d:378124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.