Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1008837
Download full text from publisher
References listed on IDEAS
- David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022.
"Testing and Reopening in an SEIR Model,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
- David Berger & Kyle Herkenhoff & Simon Mongey, 2020. "An SEIR Infectious Disease Model with Testing and Conditional Quarantine," Working Papers 2020-017, Human Capital and Economic Opportunity Working Group.
- David W. Berger & Kyle F. Herkenhoff & Simon Mongey, 2020. "An SEIR Infectious Disease Model with Testing and Conditional Quarantine," Staff Report 597, Federal Reserve Bank of Minneapolis.
- David Berger & Kyle Herkenhoff & Simon Mongey, 2020. "An SEIR Infectious Disease Model with Testing and Conditional Quarantine," Working Papers 2020-25, Becker Friedman Institute for Research In Economics.
- David W. Berger & Kyle F. Herkenhoff & Simon Mongey, 2020. "An SEIR Infectious Disease Model with Testing and Conditional Quarantine," NBER Working Papers 26901, National Bureau of Economic Research, Inc.
- Zhang, Xiaolei & Ma, Renjun & Wang, Lin, 2020. "Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
- Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
- Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
- Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
- Sheryl L. Chang & Nathan Harding & Cameron Zachreson & Oliver M. Cliff & Mikhail Prokopenko, 2020. "Modelling transmission and control of the COVID-19 pandemic in Australia," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Sepehr Rafieenasab & Amir-Pouyan Zahiri & Ehsan Roohi, 2020. "Prediction of peak and termination of novel coronavirus COVID-19 epidemic in Iran," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(11), pages 1-17, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang Ye & Abhishek Pandey & Carolyn Bawden & Dewan Md. Sumsuzzman & Rimpi Rajput & Affan Shoukat & Burton H. Singer & Seyed M. Moghadas & Alison P. Galvani, 2025. "Integrating artificial intelligence with mechanistic epidemiological modeling: a scoping review of opportunities and challenges," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
- Gerardo Chowell & Sushma Dahal & Amna Tariq & Kimberlyn Roosa & James M Hyman & Ruiyan Luo, 2022. "An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA," PLOS Computational Biology, Public Library of Science, vol. 18(10), pages 1-20, October.
- Roberto Vega & Leonardo Flores & Russell Greiner, 2022. "SIMLR: Machine Learning inside the SIR Model for COVID-19 Forecasting," Forecasting, MDPI, vol. 4(1), pages 1-23, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nathan H. Schumaker & Sydney M. Watkins, 2021. "Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA," Land, MDPI, vol. 10(4), pages 1-13, April.
- Waychal, Nachiketas & Laha, Arnab Kumar & Sinha, Ankur, 2022. "Customized forecasting with Adaptive Ensemble Generator," IIMA Working Papers WP 2022-06-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
- Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
- Sinitsyn, E. V. & Tolmachev, A. V. & Ovchinnikov, A. S., 2020. "Socio-economic factors in the spread of SARS-COV-2 across Russian regions," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 6(3), pages 129-145.
- Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
- Jordan J Bird & Chloe M Barnes & Cristiano Premebida & Anikó Ekárt & Diego R Faria, 2020. "Country-level pandemic risk and preparedness classification based on COVID-19 data: A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
- da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Tsiligianni, Christiana & Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2023. "A stochastic inventory model of COVID-19 and robust, real-time identification of carriers at large and infection rate via asymptotic laws," European Journal of Operational Research, Elsevier, vol. 304(1), pages 42-56.
- Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
- Jiří Mazurek, 2021. "The evaluation of COVID-19 prediction precision with a Lyapunov-like exponent," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-9, May.
- Giacomo De Nicola & Marc Schneble & Göran Kauermann & Ursula Berger, 2022. "Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19 infections," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 407-426, September.
- Aman Khakharia & Vruddhi Shah & Sankalp Jain & Jash Shah & Amanshu Tiwari & Prathamesh Daphal & Mahesh Warang & Ninad Mehendale, 2021. "Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 1-19, March.
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008837. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.