IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0234789.html
   My bibliography  Save this article

Modelling carbon emissions of diesel trucks on longitudinal slope sections in China

Author

Listed:
  • Yaping Dong
  • Jinliang Xu
  • Chenwei Gu

Abstract

Carbon emissions are the primary reason that contributes to global warming. The gradient has a significant impact on the carbon dioxide (CO2) emissions produced by trucks. The aim of the current paper is to propose a carbon emission quantification model for diesel trucks on longitudinal slope sections and investigate the influence of gradient on the carbon emissions of trucks for use in the low-carbon highway design. The law of conservation of mechanical energy, the first law of thermodynamics, and the vehicle longitudinal dynamics theory were adopted for deriving the carbon emission model of the trucks on the flat, uphill, downhill and round-trip longitudinal slope segments. Three kinds of common trucks were chosen to conduct the field test. Following the test data, the model demonstrates a high accuracy. The minimum gradient which is expected to impact carbon emissions of trucks on the round-trip longitudinal slope sections was the balance gradient as revealed. The gradient of the longitudinal slope is required to be avoided to be greater in comparison with the balance gradient for the achievement of the two-way traffic low carbon operation on a highway. The results of this study are valuable to researchers interested in low carbon road design and low carbon transportation control.

Suggested Citation

  • Yaping Dong & Jinliang Xu & Chenwei Gu, 2020. "Modelling carbon emissions of diesel trucks on longitudinal slope sections in China," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
  • Handle: RePEc:plo:pone00:0234789
    DOI: 10.1371/journal.pone.0234789
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234789
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0234789&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0234789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yaping Dong & Jinliang Xu & Xingliang Liu & Chao Gao & Han Ru & Zhihao Duan, 2019. "Carbon Emissions and Expressway Traffic Flow Patterns in China," Sustainability, MDPI, vol. 11(10), pages 1-12, May.
    2. Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinliang Xu & Yaping Dong & Menghua Yan, 2020. "A Model for Estimating Passenger-Car Carbon Emissions that Accounts for Uphill, Downhill and Flat Roads," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    2. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    3. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
    4. Jieyu Fan & Arsalan Najafi & Jokhio Sarang & Tian Li, 2023. "Analyzing and Optimizing the Emission Impact of Intersection Signal Control in Mixed Traffic," Sustainability, MDPI, vol. 15(22), pages 1-14, November.
    5. Li, Wenjie & Yang, Lixing & Wang, Li & Zhou, Xuesong & Liu, Ronghui & Gao, Ziyou, 2017. "Eco-reliable path finding in time-variant and stochastic networks," Energy, Elsevier, vol. 121(C), pages 372-387.
    6. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    7. Hongxing Zhao & Ruichun He & Xiaoyan Jia, 2019. "Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    8. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    9. Anna Franceschetti & Dorothée Honhon & Gilbert Laporte & Tom Van Woensel, 2018. "A Shortest-Path Algorithm for the Departure Time and Speed Optimization Problem," Transportation Science, INFORMS, vol. 52(4), pages 756-768, August.
    10. Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    12. Angelo Maiorino & Adrián Mota-Babiloni & Fabio Petruzziello & Manuel Gesù Del Duca & Andrea Ariano & Ciro Aprea, 2022. "A Comprehensive Energy Model for an Optimal Design of a Hybrid Refrigerated Van," Energies, MDPI, vol. 15(13), pages 1-23, July.
    13. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    14. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    15. Kramer, Raphael & Subramanian, Anand & Vidal, Thibaut & Cabral, Lucídio dos Anjos F., 2015. "A matheuristic approach for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 243(2), pages 523-539.
    16. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    17. M. Turkensteen (Marcel) & van den Heuvel, W., 2019. "The trade-off between costs and carbon emissions from lot-sizing decisions," Econometric Institute Research Papers EI2019-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Arjun Paul & Ravi Shankar Kumar & Chayanika Rout & Adrijit Goswami, 2021. "A bi-objective two-echelon pollution routing problem with simultaneous pickup and delivery under multiple time windows constraint," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 962-993, December.
    19. Natthakrit Bamrungwong & Varin Vongmanee & Wanchai Rattanawong, 2020. "The Development of a CO 2 Emission Coefficient for Medium- and Heavy-Duty Vehicles with Different Road Slope Conditions Using Multiple Linear Regression, and Considering the Health Effects," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    20. Onur Can Saka & Sinan Gürel & Tom Van Woensel, 2017. "Using cost change estimates in a local search heuristic for the pollution routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 557-587, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0234789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.