IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0227334.html
   My bibliography  Save this article

Statistical learning for turboshaft helicopter accidents using logistic regression

Author

Listed:
  • Rachmat Subagia
  • Joseph Homer Saleh
  • Jared S Churchwell
  • Katherine S Zhang

Abstract

The objective of this work is to advance the understanding of helicopter accidents by examining and quantifying the association between helicopter-specific configurations (number of main rotor blades, number of engines, rotor diameter, and takeoff weight) and the likelihood of accidents. We leverage a dataset of 8,338 turboshaft helicopters in the U.S. civil fleet and 825 accidents from 2005 to 2015. We use the dataset to develop a logistic regression model using the method of purposeful selection, which we exploit for inferential purposes and highlight the novel insights it reveals. For example, one important question for the design and acquisition of helicopters is whether twin-engine turboshaft helicopters exhibit a smaller likelihood of accidents than their single-engine counterparts, all else being equal. The evidence-based result we derive indicates that the answer is contingent on other covariates, and that a tipping point exists in terms of the rotor diameter beyond which the likelihood of accidents of twin-engines is higher (worse) than that of their single-engine counterparts. Another important result derived here is the association between the number of main rotor blades and likelihood of accidents. We found that for single-engine turboshaft helicopters, the four-bladed ones are associated with the lowest likelihood of accidents. We also identified a clear coupling between the number of engines and the rotor diameter in terms of likelihood of accidents. In summary, we establish important relationships between the different helicopter configurations here considered and the likelihood of accident, but these are associations, not causal in nature. The causal pathway, if it exists, may be confounded or mediated by other variables not accounted for here. The results provided here lend themselves to a rich set of interpretive possibilities, and because of their significant safety implications they deserve careful attention from the rotorcraft community.

Suggested Citation

  • Rachmat Subagia & Joseph Homer Saleh & Jared S Churchwell & Katherine S Zhang, 2020. "Statistical learning for turboshaft helicopter accidents using logistic regression," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-21, January.
  • Handle: RePEc:plo:pone00:0227334
    DOI: 10.1371/journal.pone.0227334
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227334
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0227334&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0227334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    2. Jan-Erik Vinnem, 2014. "Offshore Risk Assessment vol 2," Springer Series in Reliability Engineering, Springer, edition 3, number 978-1-4471-5213-2, September.
    3. Churchwell, Jared S. & Zhang, Katherine S. & Saleh, Joseph H., 2018. "Epidemiology of helicopter accidents: Trends, rates, and covariates," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 373-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhaoyi & Saleh, Joseph Homer & Subagia, Rachmat, 2020. "Machine learning for helicopter accident analysis using supervised classification: Inference, prediction, and implications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Proto, Eugenio & Rustichini, Aldo, 2012. "Life Satisfaction, Household Income and Personality Traits," The Warwick Economics Research Paper Series (TWERPS) 988, University of Warwick, Department of Economics.
    3. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    4. Adrian Adermon & Mikael Lindahl & Daniel Waldenström, 2018. "Intergenerational Wealth Mobility and the Role of Inheritance: Evidence from Multiple Generations," Economic Journal, Royal Economic Society, vol. 128(612), pages 482-513, July.
    5. Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
    6. Churchwell, Jared S. & Zhang, Katherine S. & Saleh, Joseph H., 2018. "Epidemiology of helicopter accidents: Trends, rates, and covariates," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 373-384.
    7. Hünermund, Paul & Czarnitzki, Dirk, 2019. "Estimating the causal effect of R&D subsidies in a pan-European program," Research Policy, Elsevier, vol. 48(1), pages 115-124.
    8. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    9. Proto, Eugenio & Rustichini, Aldo, 2015. "Life satisfaction, income and personality," Journal of Economic Psychology, Elsevier, vol. 48(C), pages 17-32.
    10. Marcelo Cajias & Philipp Freudenreich & Anna Heller & Wolfgang Schaefers, 2018. "Censored Quantile Regressions and the Determinants of Real Estate Liquidity," ERES eres2018_203, European Real Estate Society (ERES).
    11. Marisa Rifada & Vita Ratnasari & Purhadi Purhadi, 2023. "Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
    12. Pregaldini, Damiano & Backes-Gellner, Uschi & Eisenkopf, Gerald, 2020. "Girls’ preferences for STEM and the effects of classroom gender composition: New evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 102-123.
    13. Jiří Valecký, 2017. "Calculation of Solvency Capital Requirements for Non-life Underwriting Risk Using Generalized Linear Models," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(4), pages 450-466.
    14. Paul Hünermund & Dirk Czarnitzki, 2016. "Estimating the local average treatment effect of R&D subsidies in a pan-European program," Working Papers of Department of Management, Strategy and Innovation, Leuven 541177, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    15. Carslake, David & Fraser, Abigail & Davey Smith, George & May, Margaret & Palmer, Tom & Sterne, Jonathan & Silventoinen, Karri & Tynelius, Per & Lawlor, Debbie A. & Rasmussen, Finn, 2013. "Associations of mortality with own height using son's height as an instrumental variable," Economics & Human Biology, Elsevier, vol. 11(3), pages 351-359.
    16. Noori Akhtar-Danesh, 2015. "A Comparison of Modeling Scales in Flexible Parametric Models," 2015 Stata Conference 15, Stata Users Group.
    17. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    18. Daniela Balutel & Christopher Henry & Kim Huynh & Marcel Voia, 2022. "Cash in the Pocket, Cash in the Cloud: Cash Holdings of Bitcoin Owners," Staff Working Papers 22-26, Bank of Canada.
    19. Sauerbrei, W. & Meier-Hirmer, C. & Benner, A. & Royston, P., 2006. "Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3464-3485, August.
    20. Sauerbrei, Willi & Royston, Patrick & Zapien, Karina, 2007. "Detecting an interaction between treatment and a continuous covariate: A comparison of two approaches," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 4054-4063, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0227334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.