IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0165728.html
   My bibliography  Save this article

Comparing the Hierarchy of Keywords in On-Line News Portals

Author

Listed:
  • Gergely Tibély
  • David Sousa-Rodrigues
  • Péter Pollner
  • Gergely Palla

Abstract

Hierarchical organization is prevalent in networks representing a wide range of systems in nature and society. An important example is given by the tag hierarchies extracted from large on-line data repositories such as scientific publication archives, file sharing portals, blogs, on-line news portals, etc. The tagging of the stored objects with informative keywords in such repositories has become very common, and in most cases the tags on a given item are free words chosen by the authors independently. Therefore, the relations among keywords appearing in an on-line data repository are unknown in general. However, in most cases the topics and concepts described by these keywords are forming a latent hierarchy, with the more general topics and categories at the top, and more specialized ones at the bottom. There are several algorithms available for deducing this hierarchy from the statistical features of the keywords. In the present work we apply a recent, co-occurrence-based tag hierarchy extraction method to sets of keywords obtained from four different on-line news portals. The resulting hierarchies show substantial differences not just in the topics rendered as important (being at the top of the hierarchy) or of less interest (categorized low in the hierarchy), but also in the underlying network structure. This reveals discrepancies between the plausible keyword association frameworks in the studied news portals.

Suggested Citation

  • Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
  • Handle: RePEc:plo:pone00:0165728
    DOI: 10.1371/journal.pone.0165728
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165728
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0165728&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0165728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hsieh Fushing & Michael P McAssey & Brianne Beisner & Brenda McCowan, 2011. "Ranking Network of a Captive Rhesus Macaque Society: A Sophisticated Corporative Kingdom," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-9, March.
    2. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    3. Krugman, Paul, 1996. "Confronting the Mystery of Urban Hierarchy," Journal of the Japanese and International Economies, Elsevier, vol. 10(4), pages 399-418, December.
    4. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    5. Gergely Tibély & Péter Pollner & Tamás Vicsek & Gergely Palla, 2013. "Extracting Tag Hierarchies," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    6. Gergely Palla & Gergely Tibély & Enys Mones & Péter Pollner & Tamás Vicsek, 2015. "Hierarchical networks of scientific journals," Palgrave Communications, Palgrave Macmillan, vol. 1(palcomms2), pages 15016-15016, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    2. repec:plo:pone00:0033799 is not listed on IDEAS
    3. Elisa Letizia & Paolo Barucca & Fabrizio Lillo, 2018. "Resolution of ranking hierarchies in directed networks," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-25, February.
    4. Guo, Fangjian & Yang, Zimo & Zhou, Tao, 2013. "Predicting link directions via a recursive subgraph-based ranking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3402-3408.
    5. Li Jiang & Luca Giuggioli & Andrea Perna & Ramón Escobedo & Valentin Lecheval & Clément Sire & Zhangang Han & Guy Theraulaz, 2017. "Identifying influential neighbors in animal flocking," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-32, November.
    6. Stephen J. Redding, 2010. "The Empirics Of New Economic Geography," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 297-311, February.
    7. An-Ming Wang, 2016. "Agglomeration and simplified housing boom," Urban Studies, Urban Studies Journal Limited, vol. 53(5), pages 936-956, April.
    8. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    9. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    10. Gilberto Seravalli, 2016. "Dimensioni e crescita delle citt? in Europa: l?incertezza danneggia soprattutto le citt? medie," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2016(2), pages 91-108.
    11. Behrens, Kristian, 2007. "On the location and lock-in of cities: Geography vs transportation technology," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 22-45, January.
    12. Alexandra SCHAFFAR, 2012. "La Loi De Zipf Sous Le Prisme De L’Auto-Correlation Spatiale - Les Cas De La Chine Et De L’Inde," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 36, pages 189-204.
    13. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    14. Rafael González‐Val, 2019. "Historical urban growth in Europe (1300–1800)," Papers in Regional Science, Wiley Blackwell, vol. 98(2), pages 1115-1136, April.
    15. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    16. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Soo, Kwok Tong, 2005. "Zipf's Law for cities: a cross-country investigation," Regional Science and Urban Economics, Elsevier, vol. 35(3), pages 239-263, May.
    18. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    20. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    21. Li, Qing & Zhang, Huaige & Hong, Xianpei, 2020. "Knowledge structure of technology licensing based on co-keywords network: A review and future directions," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 154-165.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0165728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.