IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics096007792200090x.html
   My bibliography  Save this article

Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms

Author

Listed:
  • Li, Qing
  • Zhang, Lingwei
  • Jia, Yongnan
  • Lu, Tianzhao
  • Chen, Xiaojie

Abstract

Models have proven useful in revealing the mechanisms underlying these collective behaviors of flocks of birds, schools of fish, swarms of insects, and herds of mammals. Biologists have found that the interaction among the starlings depends on topological rather than metric distance. Most of these topology-based collective models endow single particle with a global visual field, in order to provide each particle with sufficient information about the surroundings. However, in nature, the individual in a group usually has a restricted visual field, such as the visual field of starlings is 143∘. In this paper, we mainly investigate whether a global visual field is necessary to form a consistent and cohesive group in swarms. In order to solve this problem, we propose a three-dimensional restricted visual field metric-free(RVFMF) model based on Pearce and Turner’s previous work. Furthermore, we discuss several vital factors governing the convergent consistency of the RVFMF model with the assistance of extensive numerical simulations. According to the simulation results, we conclude that the best view angle of each particle in a swarm increases with increasing population size. Besides, the best view angle gradually becomes stable around 155∘ when the population size is larger than 1000. We also present data from quantitative analysis to prove that a flock of birds could obtain better coordination pattern under an optimal restricted visual field rather than under a global visual field.

Suggested Citation

  • Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s096007792200090x
    DOI: 10.1016/j.chaos.2022.111879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200090X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    2. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    3. Netzer, Gal & Yarom, Yuval & Ariel, Gil, 2019. "Heterogeneous populations in a network model of collective motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C).
    4. Wang, Xin-Guang & Zhu, Chen-Ping & Yin, Chuan-Yang & Hu, Dong-Sheng & Yan, Zhi-Jun, 2013. "A modified Vicsek model for self-propelled agents with exponential neighbor weight and restricted visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2398-2405.
    5. H. Chaté & F. Ginelli & G. Grégoire & F. Peruani & F. Raynaud, 2008. "Modeling collective motion: variations on the Vicsek model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 64(3), pages 451-456, August.
    6. George, Mishel & Ghose, Debasish, 2012. "Reducing convergence times of self-propelled swarms via modified nearest neighbor rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4121-4127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Bei & Bai, Guanghan & Liu, Tao & Fang, Yining & Zhang, Yun-an & Tao, Junyong, 2023. "An improved swarm model with informed agents to prevent swarm-splitting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yandong Xiao & Chuliang Song & Liang Tian & Yang-Yu Liu, 2019. "Accelerating The Emergence Of Order In Swarming Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-12, December.
    2. Chen, Yu-Rong & Zhang, Xian-Xia & Yu, Yin-Sheng & Ma, Shi-Wei & Yang, Banghua, 2022. "Enhancing convergence efficiency of self-propelled agents using direction preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    3. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    4. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    6. Li Jiang & Luca Giuggioli & Andrea Perna & Ramón Escobedo & Valentin Lecheval & Clément Sire & Zhangang Han & Guy Theraulaz, 2017. "Identifying influential neighbors in animal flocking," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-32, November.
    7. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    8. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    9. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    10. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    11. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    12. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    13. Carlo Bianca & Marco Menale, 2019. "A Convergence Theorem for the Nonequilibrium States in the Discrete Thermostatted Kinetic Theory," Mathematics, MDPI, vol. 7(8), pages 1-13, July.
    14. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    15. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    16. Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
    17. Mathew Titus & George Hagstrom & James R Watson, 2021. "Unsupervised manifold learning of collective behavior," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-20, February.
    18. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    19. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    20. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s096007792200090x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.