IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0161112.html
   My bibliography  Save this article

Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model

Author

Listed:
  • Jing Xiao
  • Qiongqiong Xu
  • Chuanli Wu
  • Yuexia Gao
  • Tianqi Hua
  • Chenwu Xu

Abstract

Background: It is challenging to deal with mixture models when missing values occur in clustering datasets. Methods and Results: We propose a dynamic clustering algorithm based on a multivariate Gaussian mixture model that efficiently imputes missing values to generate a “pseudo-complete” dataset. Parameters from different clusters and missing values are estimated according to the maximum likelihood implemented with an expectation-maximization algorithm, and multivariate individuals are clustered with Bayesian posterior probability. A simulation showed that our proposed method has a fast convergence speed and it accurately estimates missing values. Our proposed algorithm was further validated with Fisher’s Iris dataset, the Yeast Cell-cycle Gene-expression dataset, and the CIFAR-10 images dataset. The results indicate that our algorithm offers highly accurate clustering, comparable to that using a complete dataset without missing values. Furthermore, our algorithm resulted in a lower misjudgment rate than both clustering algorithms with missing data deleted and with missing-value imputation by mean replacement. Conclusion: We demonstrate that our missing-value imputation clustering algorithm is feasible and superior to both of these other clustering algorithms in certain situations.

Suggested Citation

  • Jing Xiao & Qiongqiong Xu & Chuanli Wu & Yuexia Gao & Tianqi Hua & Chenwu Xu, 2016. "Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.
  • Handle: RePEc:plo:pone00:0161112
    DOI: 10.1371/journal.pone.0161112
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161112
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0161112&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0161112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hunt, Lynette & Jorgensen, Murray, 2003. "Mixture model clustering for mixed data with missing information," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 429-440, January.
    2. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    3. Podofillini, L. & Zio, E. & Mercurio, D. & Dang, V.N., 2010. "Dynamic safety assessment: Scenario identification via a possibilistic clustering approach," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 534-549.
    4. Matthew Hayes & Yoon Soo Pyon & Jing Li, 2012. "A Model-Based Clustering Method for Genomic Structural Variant Prediction and Genotyping Using Paired-End Sequencing Data," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Kolos Cs. Ágoston & Marianna E.-Nagy, 2024. "Mixed integer linear programming formulation for K-means clustering problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 11-27, March.
    3. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    4. Di Zio, Marco & Guarnera, Ugo & Luzi, Orietta, 2007. "Imputation through finite Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5305-5316, July.
    5. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    6. Muhannad Mohammed Alfehaid, 2025. "Integrating Hard and Green Infrastructure for Sustainable Tourism: A Spatial Analysis of Saudi Regions," Sustainability, MDPI, vol. 17(20), pages 1-15, October.
    7. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Gnidchenko, A., 2025. "World trade concentration and product market segregation," Journal of the New Economic Association, New Economic Association, vol. 66(1), pages 36-53.
    9. Kumar, Sandeep & Chakraverty, S. & Sethi, Narayan, 2025. "Assessing changes in wealth index using primary survey data," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    10. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    11. Clarissa Amico & Mattia Brambilla & Roberto Cigolini, 2025. "Quantitative assessment of the profitability of next shoring strategy in global supply chains," Flexible Services and Manufacturing Journal, Springer, vol. 37(3), pages 1013-1056, September.
    12. Bernd Scherer & Diogo Judice & Stephan Kessler, 2010. "Price reversals in global equity markets," Journal of Asset Management, Palgrave Macmillan, vol. 11(5), pages 332-345, December.
    13. Ugofilippo Basellini & Carlo Giovanni Camarda, 2020. "Modelling COVID-19 mortality at the regional level in Italy," Working Papers axq0sudakgkzhr-blecv, French Institute for Demographic Studies.
    14. Evgeny Kagan & Alexander Novoselsky & Alexander Rybalov, 2025. "Fuzzy Clustering with Uninorm-Based Distance Measure," Mathematics, MDPI, vol. 13(10), pages 1-20, May.
    15. Humberto Elias Garcia Lopes & Marlusa de Sevilha Gosling, 2021. "Cluster Analysis in Practice: Dealing with Outliers in Managerial Research," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 25(1), pages 200081-2000.
    16. Mónika-Anetta Alt & Vizeli Ibolya, 2021. "Identifying Relevant Segments of Potential Banking Chatbot Users Based on Technology Adoption Behavior," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 33(2), pages 165-183.
    17. Naderi, Mehrdad & Hung, Wen-Liang & Lin, Tsung-I & Jamalizadeh, Ahad, 2019. "A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum–Saunders distributions and its application to extrasolar planets," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 126-138.
    18. Alan Fernihough & Kevin Hjortshøj, 2021. "Coal and the European Industrial Revolution," The Economic Journal, Royal Economic Society, vol. 131(635), pages 1135-1149.
    19. Mohiuddin, Hossain & Fitch-Polse, Dillon T. & Handy, Susan L., 2024. "Examining market segmentation to increase bike-share use and enhance equity: The case of the greater Sacramento region," Transport Policy, Elsevier, vol. 145(C), pages 279-290.
    20. Hyukjun Gweon, 2023. "A power-controlled reliability assessment for multi-class probabilistic classifiers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(4), pages 927-949, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0161112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.