IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v41y2003i3-4p429-440.html

Mixture model clustering for mixed data with missing information

Author

Listed:
  • Hunt, Lynette
  • Jorgensen, Murray

Abstract

No abstract is available for this item.

Suggested Citation

  • Hunt, Lynette & Jorgensen, Murray, 2003. "Mixture model clustering for mixed data with missing information," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 429-440, January.
  • Handle: RePEc:eee:csdana:v:41:y:2003:i:3-4:p:429-440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00190-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    2. Christophe Genolini & Bruno Falissard, 2010. "KmL: k-means for longitudinal data," Computational Statistics, Springer, vol. 25(2), pages 317-328, June.
    3. Woodward, Wayne A. & Sain, Stephan R., 2003. "Testing for outliers from a mixture distribution when some data are missing," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 193-210, October.
    4. Di Zio, Marco & Guarnera, Ugo & Luzi, Orietta, 2007. "Imputation through finite Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5305-5316, July.
    5. Jing Xiao & Qiongqiong Xu & Chuanli Wu & Yuexia Gao & Tianqi Hua & Chenwu Xu, 2016. "Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.
    6. Wasito, Ito & Mirkin, Boris, 2006. "Nearest neighbours in least-squares data imputation algorithms with different missing patterns," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 926-949, February.
    7. Tatjana Neuhuber & Antonia E. Schneider, 2025. "Stratification of Livability: A Framework for Analyzing Differences in Livability Across Income, Consumption, and Social Infrastructure," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 177(3), pages 1051-1080, April.
    8. Reddy, Chandan K. & Rajaratnam, Bala, 2010. "Learning mixture models via component-wise parameter smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 732-749, March.
    9. Bohning, Dankmar & Seidel, Wilfried, 2003. "Editorial: recent developments in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 349-357, January.
    10. Marco Di Zio & Ugo Guarnera, 2009. "Semiparametric predictive mean matching," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(2), pages 175-186, June.
    11. Adelchi Azzalini & Giovanna Menardi, 2016. "Density-based clustering with non-continuous data," Computational Statistics, Springer, vol. 31(2), pages 771-798, June.
    12. Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shouchuang Zhang & Ting Wang & Lanyue Zhang & Yuehui Wei & Weiyan Jian & Jing Guo, 2024. "Relationship between social inequality perception patterns and depressive symptoms among Chinese adults: A national representative longitudinal study," International Journal of Social Psychiatry, , vol. 70(5), pages 933-944, August.
    2. Scrucca, Luca, 2016. "Identifying connected components in Gaussian finite mixture models for clustering," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 5-17.
    3. Marianna Virtanen & Jussi Vahtera & Jenny Head & Rosemary Dray-Spira & Annaleena Okuloff & Adam G Tabak & Marcel Goldberg & Jenni Ervasti & Markus Jokela & Archana Singh-Manoux & Jaana Pentti & Marie , 2015. "Work Disability among Employees with Diabetes: Latent Class Analysis of Risk Factors in Three Prospective Cohort Studies," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-14, November.
    4. Julian Aichholzer & Sylvia Kritzinger & Carolina Plescia, 2021. "National identity profiles and support for the European Union," European Union Politics, , vol. 22(2), pages 293-315, June.
    5. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    6. Jacky C. K. Ng & Joanne Y. H. Chong & Hilary K. Y. Ng, 2023. "The way I see the world, the way I envy others: a person-centered investigation of worldviews and the malicious and benign forms of envy among adolescents and adults," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    7. Danks, Nicholas P. & Sharma, Pratyush N. & Sarstedt, Marko, 2020. "Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM)," Journal of Business Research, Elsevier, vol. 113(C), pages 13-24.
    8. Gillian C. Williams & Karen A. Patte & Mark A. Ferro & Scott T. Leatherdale, 2021. "Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students," IJERPH, MDPI, vol. 18(19), pages 1-14, October.
    9. Mélissa Lemoine & Gerhard Gmel & Simon Foster & Simon Marmet & Joseph Studer, 2020. "Multiple trajectories of alcohol use and the development of alcohol use disorder: Do Swiss men mature-out of problematic alcohol use during emerging adulthood?," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    10. Sarstedt, Marko & Salcher, André, 2007. "Modellselektion in Finite Mixture PLS-Modellen," Discussion Papers in Business Administration 1394, University of Munich, Munich School of Management.
    11. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    12. Lekkas, Peter & Howard, Natasha J & Stankov, Ivana & daniel, mark & Paquet, Catherine, 2019. "A Longitudinal Typology of Neighbourhood-level Social Fragmentation: A Finite Mixture Model Approach," SocArXiv 56x9c, Center for Open Science.
    13. White Whilby, Kellee & Huang, Shuo J. & Bell, Bethany A. & Robinson-Ector, Kaitlynn & Sims, Mario & Williams, David R., 2025. "Correlates of longitudinal patterns of racial discrimination in midlife and older Black adults: Evidence from the health and retirement study," Social Science & Medicine, Elsevier, vol. 380(C).
    14. Yu, Jing & Nummi, Tapio & Pan, Jianxin, 2022. "Mixture regression for longitudinal data based on joint mean–covariance model," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    15. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    16. Allen, Jennifer Dacey & Caspi, Caitlin & Yang, May & Leyva, Bryan & Stoddard, Anne M. & Tamers, Sara & Tucker-Seeley, Reginald D. & Sorensen, Glorian C., 2014. "Pathways between acculturation and health behaviors among residents of low-income housing: The mediating role of social and contextual factors," Social Science & Medicine, Elsevier, vol. 123(C), pages 26-36.
    17. Diana Mindrila, 2023. "Bayesian Latent Class Analysis: Sample Size, Model Size, and Classification Precision," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    18. Ellen Bouchery & Monica Farid, "undated". "Variation in Staff Salary Costs Associated with Characteristics of Substance Use Disorder Treatment Facilities," Mathematica Policy Research Reports 65b1484724354c0ca8270d1c6, Mathematica Policy Research.
    19. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    20. Wang, Kun & Marbut, Alexander R. & Suntai, Zainab & Zheng, Dianhan & Chen, Xiayu, 2022. "Patterns in older adults' perceived chronic stressor types and cognitive functioning trajectories: Are perceived chronic stressors always bad?," Social Science & Medicine, Elsevier, vol. 311(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:41:y:2003:i:3-4:p:429-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.