IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v32y2024i1d10.1007_s10100-023-00881-1.html
   My bibliography  Save this article

Mixed integer linear programming formulation for K-means clustering problem

Author

Listed:
  • Kolos Cs. Ágoston

    (Corvinus University of Budapest)

  • Marianna E.-Nagy

    (Corvinus University of Budapest)

Abstract

The minimum sum-of-squares clusering is the most widely used clustering method. The minimum sum-of-squares clustering is usually solved by the heuristic KMEANS algorithm, which converges to a local optimum. A lot of effort has been made to solve such kind of problems, but a mixed integer linear programming formulation (MILP) is still missing. In this paper, we formulate MILP models. The advantage of MILP formulation is that users can extend the original problem with arbitrary linear constraints. We also present numerical results, we solve these models up to sample size of 150.

Suggested Citation

  • Kolos Cs. Ágoston & Marianna E.-Nagy, 2024. "Mixed integer linear programming formulation for K-means clustering problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 11-27, March.
  • Handle: RePEc:spr:cejnor:v:32:y:2024:i:1:d:10.1007_s10100-023-00881-1
    DOI: 10.1007/s10100-023-00881-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-023-00881-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-023-00881-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Snježana Majstorović & Kristian Sabo & Johannes Jung & Matija Klarić, 2018. "Spectral methods for growth curve clustering," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 715-737, September.
    2. CORNUEJOLS, Gérard & NEMHAUSER, George L. & WOLSEY, Laurence A., 1980. "A canonical representation of simple plant location problems and its applications," LIDAM Reprints CORE 414, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    4. Kulkarni, Girish & Fathi, Yahya, 2007. "Integer programming models for the q-mode problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 612-625, October.
    5. Ulrich Dorndorf & Erwin Pesch, 1994. "Fast Clustering Algorithms," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 141-153, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    2. Yi Zhou & Jin-Kao Hao & Adrien Goëffon, 2016. "A three-phased local search approach for the clique partitioning problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 469-491, August.
    3. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
    4. Jovanovic, Raka & Sanfilippo, Antonio P. & Voß, Stefan, 2023. "Fixed set search applied to the clique partitioning problem," European Journal of Operational Research, Elsevier, vol. 309(1), pages 65-81.
    5. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    6. Ah-Pine, Julien, 2022. "Learning doubly stochastic and nearly idempotent affinity matrix for graph-based clustering," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1069-1078.
    7. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
    8. Albareda-Sambola, Maria & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2019. "Reformulated acyclic partitioning for rail-rail containers transshipment," European Journal of Operational Research, Elsevier, vol. 277(1), pages 153-165.
    9. Alexander Belyi & Stanislav Sobolevsky & Alexander Kurbatski & Carlo Ratti, 2023. "Subnetwork constraints for tighter upper bounds and exact solution of the clique partitioning problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(2), pages 269-297, October.
    10. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    11. Gary Kochenberger & Fred Glover & Bahram Alidaee & Haibo Wang, 2005. "Clustering of Microarray data via Clique Partitioning," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 77-92, August.
    12. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    13. Coleman, Dan & Dong, Xioapeng & Hardin, Johanna & Rocke, David M. & Woodruff, David L., 1999. "Some computational issues in cluster analysis with no a priori metric," Computational Statistics & Data Analysis, Elsevier, vol. 31(1), pages 1-11, July.
    14. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    15. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    17. Bernd Scherer & Diogo Judice & Stephan Kessler, 2010. "Price reversals in global equity markets," Journal of Asset Management, Palgrave Macmillan, vol. 11(5), pages 332-345, December.
    18. Ugofilippo Basellini & Carlo Giovanni Camarda, 2020. "Modelling COVID-19 mortality at the regional level in Italy," Working Papers axq0sudakgkzhr-blecv, French Institute for Demographic Studies.
    19. Hinojosa, Yolanda & Marín, Alfredo & Puerto, Justo, 2023. "Dynamically second-preferred p-center problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 33-47.
    20. Jing Xiao & Qiongqiong Xu & Chuanli Wu & Yuexia Gao & Tianqi Hua & Chenwu Xu, 2016. "Performance Evaluation of Missing-Value Imputation Clustering Based on a Multivariate Gaussian Mixture Model," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:32:y:2024:i:1:d:10.1007_s10100-023-00881-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.