IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v42y2008i3p292-301.html
   My bibliography  Save this article

Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem

Author

Listed:
  • Ulrich Dorndorf

    (INFORM GmbH, 52076 Aachen, Germany)

  • Florian Jaehn

    (Institute of Information Systems, University of Siegen, Siegen, 57068, Germany)

  • Erwin Pesch

    (Institute of Information Systems, University of Siegen, Siegen, 57068, Germany)

Abstract

This paper considers the problem of assigning flights to airport gates. We examine the general case in which an aircraft serving a flight may be assigned to different gates for arrival and departure processing and for optional intermediate parking. Restrictions to this assignment include gate closures and shadow restrictions, i.e., the situation in which certain gate assignments may cause the blocking of neighboring gates. The objectives include maximization of the total assignment preference score, minimization of the number of unassigned flights during overload periods, minimization of the number of tows, as well as maximization of the robustness of the resulting schedule with respect to flight delays. We are presenting a simple transformation of the flight-gate scheduling (FGS) problem to a graph problem, i.e., the clique partitioning problem (CPP). The algorithm used to solve the CPP is a heuristic based on the ejection chain algorithm by Dorndorf and Pesch [Dorndorf, U., E. Pesch. 1994. Fast clustering algorithms. ORSA J. Comput. 6 141--153]. This leads to a very effective approach for solving the original problem.

Suggested Citation

  • Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
  • Handle: RePEc:inm:ortrsc:v:42:y:2008:i:3:p:292-301
    DOI: 10.1287/trsc.1070.0211
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1070.0211
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1070.0211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. H Ding & A Lim & B Rodrigues & Y Zhu, 2004. "New heuristics for over-constrained flight to gate assignments," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 760-768, July.
    3. Ulrich Dorndorf & Erwin Pesch, 1994. "Fast Clustering Algorithms," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 141-153, May.
    4. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2007. "Flight gate scheduling: State-of-the-art and recent developments," Omega, Elsevier, vol. 35(3), pages 326-334, June.
    5. Bolat, Ahmet, 2000. "Procedures for providing robust gate assignments for arriving aircrafts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 63-80, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assif Assad & Kusum Deep, 2018. "A heuristic based harmony search algorithm for maximum clique problem," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 411-433, June.
    2. Noriyoshi Sukegawa & Yoshitsugu Yamamoto & Liyuan Zhang, 2013. "Lagrangian relaxation and pegging test for the clique partitioning problem," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 363-391, December.
    3. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    4. Guépet, J. & Acuna-Agost, R. & Briant, O. & Gayon, J.P., 2015. "Exact and heuristic approaches to the airport stand allocation problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 597-608.
    5. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    6. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    7. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    8. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.
    9. Yi Zhou & Jin-Kao Hao & Adrien Goëffon, 2016. "A three-phased local search approach for the clique partitioning problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 469-491, August.
    10. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    11. Rupp, Johannes & Boysen, Nils & Briskorn, Dirk, 2022. "Optimizing consolidation processes in hubs: The hub-arrival-departure problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1051-1066.
    12. Zhou, Qing & Benlic, Una & Wu, Qinghua, 2020. "An opposition-based memetic algorithm for the maximum quasi-clique problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 63-83.
    13. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    14. Zhao, Peixin & Han, Xue & Wan, Di, 2021. "Evaluation of the airport ferry vehicle scheduling based on network maximum flow model," Omega, Elsevier, vol. 99(C).
    15. Kress, Dominik & Meiswinkel, Sebastian & Pesch, Erwin, 2019. "Straddle carrier routing at seaport container terminals in the presence of short term quay crane buffer areas," European Journal of Operational Research, Elsevier, vol. 279(3), pages 732-750.
    16. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    17. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    18. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    19. Yin, Suwan & Han, Ke & Ochieng, Washington Yotto & Sanchez, Daniel Regueiro, 2022. "Joint apron-runway assignment for airport surface operations," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 76-100.
    20. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    21. Jovanovic, Raka & Sanfilippo, Antonio P. & Voß, Stefan, 2023. "Fixed set search applied to the clique partitioning problem," European Journal of Operational Research, Elsevier, vol. 309(1), pages 65-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    2. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    3. Şeker, Merve & Noyan, Nilay, 2012. "Stochastic optimization models for the airport gate assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 438-459.
    4. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    5. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    6. Jovanovic, Raka & Sanfilippo, Antonio P. & Voß, Stefan, 2023. "Fixed set search applied to the clique partitioning problem," European Journal of Operational Research, Elsevier, vol. 309(1), pages 65-81.
    7. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
    8. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    10. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    11. Albareda-Sambola, Maria & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2019. "Reformulated acyclic partitioning for rail-rail containers transshipment," European Journal of Operational Research, Elsevier, vol. 277(1), pages 153-165.
    12. Guépet, J. & Acuna-Agost, R. & Briant, O. & Gayon, J.P., 2015. "Exact and heuristic approaches to the airport stand allocation problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 597-608.
    13. Amadeo Ascó, 2016. "An Analysis of Robustness Approaches for the Airport Baggage Sorting Station Assignment Problem," Journal of Optimization, Hindawi, vol. 2016, pages 1-19, September.
    14. Narciso, Mercedes E. & Piera, Miquel A., 2015. "Robust gate assignment procedures from an airport management perspective," Omega, Elsevier, vol. 50(C), pages 82-95.
    15. Ah-Pine, Julien, 2022. "Learning doubly stochastic and nearly idempotent affinity matrix for graph-based clustering," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1069-1078.
    16. Yi Zhou & Jin-Kao Hao & Adrien Goëffon, 2016. "A three-phased local search approach for the clique partitioning problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 469-491, August.
    17. Gary Kochenberger & Fred Glover & Bahram Alidaee & Haibo Wang, 2005. "Clustering of Microarray data via Clique Partitioning," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 77-92, August.
    18. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    19. Alidaee, Bahram & Li, Haitao & Wang, Haibo & Womer, Keith, 2021. "Integer programming formulations in sequencing with total earliness and tardiness penalties, arbitrary due dates, and no idle time: A concise review and extension," Omega, Elsevier, vol. 103(C).
    20. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:42:y:2008:i:3:p:292-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.