IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v98y2023i2d10.1007_s00186-023-00835-y.html
   My bibliography  Save this article

Subnetwork constraints for tighter upper bounds and exact solution of the clique partitioning problem

Author

Listed:
  • Alexander Belyi

    (Masaryk University
    FM IRG, SMART Centre
    Belarusian State University)

  • Stanislav Sobolevsky

    (Masaryk University
    Masaryk University
    New York University)

  • Alexander Kurbatski

    (Belarusian State University)

  • Carlo Ratti

    (Massachusetts Institute of Technology)

Abstract

We consider a variant of the clustering problem for a complete weighted graph. The aim is to partition the nodes into clusters maximizing the sum of the edge weights within the clusters. This problem is known as the clique partitioning problem, being NP-hard in the general case of having edge weights of different signs. We propose a new method of estimating an upper bound of the objective function that we combine with the classical branch-and-bound technique to find the exact solution. We evaluate our approach on a broad range of random graphs and real-world networks. The proposed approach provided tighter upper bounds and achieved significant convergence speed improvements compared to known alternative methods.

Suggested Citation

  • Alexander Belyi & Stanislav Sobolevsky & Alexander Kurbatski & Carlo Ratti, 2023. "Subnetwork constraints for tighter upper bounds and exact solution of the clique partitioning problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(2), pages 269-297, October.
  • Handle: RePEc:spr:mathme:v:98:y:2023:i:2:d:10.1007_s00186-023-00835-y
    DOI: 10.1007/s00186-023-00835-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-023-00835-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-023-00835-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noriyoshi Sukegawa & Yoshitsugu Yamamoto & Liyuan Zhang, 2013. "Lagrangian relaxation and pegging test for the clique partitioning problem," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 363-391, December.
    2. Harun Pirim & Burak Eksioglu & Fred W. Glover, 2018. "A Novel Mixed Integer Linear Programming Model for Clustering Relational Networks," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 492-508, February.
    3. Roger Guimerà & Luís A. Nunes Amaral, 2005. "Functional cartography of complex metabolic networks," Nature, Nature, vol. 433(7028), pages 895-900, February.
    4. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
    5. Benati, Stefano & Ponce, Diego & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "A branch-and-price procedure for clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 297(3), pages 817-830.
    6. Saul Amorim & Jean-Pierre Barthélemy & Celso Ribeiro, 1992. "Clustering and clique partitioning: Simulated annealing and tabu search approaches," Journal of Classification, Springer;The Classification Society, vol. 9(1), pages 17-41, January.
    7. Yu Du & Gary Kochenberger & Fred Glover & Haibo Wang & Mark Lewis & Weihong Xie & Takeshi Tsuyuguchi, 2022. "Solving Clique Partitioning Problems: A Comparison of Models and Commercial Solvers," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 59-81, January.
    8. Michael Brusco & Hans-Friedrich Köhn, 2009. "Clustering Qualitative Data Based on Binary Equivalence Relations: Neighborhood Search Heuristics for the Clique Partitioning Problem," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 685-703, December.
    9. Ulrich Dorndorf & Erwin Pesch, 1994. "Fast Clustering Algorithms," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 141-153, May.
    10. G. Agarwal & D. Kempe, 2008. "Modularity-maximizing graph communities via mathematical programming," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(3), pages 409-418, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhou & Jin-Kao Hao & Adrien Goëffon, 2016. "A three-phased local search approach for the clique partitioning problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 469-491, August.
    2. Jovanovic, Raka & Sanfilippo, Antonio P. & Voß, Stefan, 2023. "Fixed set search applied to the clique partitioning problem," European Journal of Operational Research, Elsevier, vol. 309(1), pages 65-81.
    3. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    4. Noriyoshi Sukegawa & Yoshitsugu Yamamoto & Liyuan Zhang, 2013. "Lagrangian relaxation and pegging test for the clique partitioning problem," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 363-391, December.
    5. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    6. Ah-Pine, Julien, 2022. "Learning doubly stochastic and nearly idempotent affinity matrix for graph-based clustering," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1069-1078.
    7. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    8. Kolos Cs. Ágoston & Marianna E.-Nagy, 2024. "Mixed integer linear programming formulation for K-means clustering problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 11-27, March.
    9. Coleman, Dan & Dong, Xioapeng & Hardin, Johanna & Rocke, David M. & Woodruff, David L., 1999. "Some computational issues in cluster analysis with no a priori metric," Computational Statistics & Data Analysis, Elsevier, vol. 31(1), pages 1-11, July.
    10. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    11. Ponce, Diego & Puerto, Justo & Temprano, Francisco, 2024. "Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 519-538.
    12. Sukeda, Issey & Miyauchi, Atsushi & Takeda, Akiko, 2023. "A study on modularity density maximization: Column generation acceleration and computational complexity analysis," European Journal of Operational Research, Elsevier, vol. 309(2), pages 516-528.
    13. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
    14. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
    15. Albareda-Sambola, Maria & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2019. "Reformulated acyclic partitioning for rail-rail containers transshipment," European Journal of Operational Research, Elsevier, vol. 277(1), pages 153-165.
    16. Michael Brusco & Douglas Steinley, 2011. "A Tabu-Search Heuristic for Deterministic Two-Mode Blockmodeling of Binary Network Matrices," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 612-633, October.
    17. Chen-Kun Tsung & Sing-Ling Lee & Hann-Jang Ho & ShengKai Chou, 2021. "A modularity-maximization-based approach for detecting multi-communities in social networks," Annals of Operations Research, Springer, vol. 303(1), pages 381-411, August.
    18. Gary Kochenberger & Fred Glover & Bahram Alidaee & Haibo Wang, 2005. "Clustering of Microarray data via Clique Partitioning," Journal of Combinatorial Optimization, Springer, vol. 10(1), pages 77-92, August.
    19. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    20. Minchao Wang & Wu Zhang & Wang Ding & Dongbo Dai & Huiran Zhang & Hao Xie & Luonan Chen & Yike Guo & Jiang Xie, 2014. "Parallel Clustering Algorithm for Large-Scale Biological Data Sets," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:98:y:2023:i:2:d:10.1007_s00186-023-00835-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.