IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0071218.html
   My bibliography  Save this article

Novel Three-Step Pseudo-Absence Selection Technique for Improved Species Distribution Modelling

Author

Listed:
  • Senait D Senay
  • Susan P Worner
  • Takayoshi Ikeda

Abstract

Pseudo-absence selection for spatial distribution models (SDMs) is the subject of ongoing investigation. Numerous techniques continue to be developed, and reports of their effectiveness vary. Because the quality of presence and absence data is key for acceptable accuracy of correlative SDM predictions, determining an appropriate method to characterise pseudo-absences for SDM’s is vital. The main methods that are currently used to generate pseudo-absence points are: 1) randomly generated pseudo-absence locations from background data; 2) pseudo-absence locations generated within a delimited geographical distance from recorded presence points; and 3) pseudo-absence locations selected in areas that are environmentally dissimilar from presence points. There is a need for a method that considers both geographical extent and environmental requirements to produce pseudo-absence points that are spatially and ecologically balanced. We use a novel three-step approach that satisfies both spatial and ecological reasons why the target species is likely to find a particular geo-location unsuitable. Step 1 comprises establishing a geographical extent around species presence points from which pseudo-absence points are selected based on analyses of environmental variable importance at different distances. This step gives an ecologically meaningful explanation to the spatial range of background data, as opposed to using an arbitrary radius. Step 2 determines locations that are environmentally dissimilar to the presence points within the distance specified in step one. Step 3 performs K-means clustering to reduce the number of potential pseudo-absences to the desired set by taking the centroids of clusters in the most environmentally dissimilar class identified in step 2. By considering spatial, ecological and environmental aspects, the three-step method identifies appropriate pseudo-absence points for correlative SDMs. We illustrate this method by predicting the New Zealand potential distribution of the Asian tiger mosquito (Aedes albopictus) and the Western corn rootworm (Diabrotica virgifera virgifera).

Suggested Citation

  • Senait D Senay & Susan P Worner & Takayoshi Ikeda, 2013. "Novel Three-Step Pseudo-Absence Selection Technique for Improved Species Distribution Modelling," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0071218
    DOI: 10.1371/journal.pone.0071218
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071218
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0071218&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0071218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    2. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    3. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Whitford, Anna M. & Shipley, Benjamin R. & McGuire, Jenny L., 2024. "The influence of the number and distribution of background points in presence-background species distribution models," Ecological Modelling, Elsevier, vol. 488(C).
    2. An T. N. Dang & Lalit Kumar & Michael Reid, 2020. "Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    3. Steen, Bart & Broennimann, Olivier & Maiorano, Luigi & Guisan, Antoine, 2024. "How sensitive are species distribution models to different background point selection strategies? A test with species at various equilibrium levels," Ecological Modelling, Elsevier, vol. 493(C).
    4. Rana, Divyashree & Sartor, Caroline Charão & Chiaverini, Luca & Cushman, Samuel Alan & Kaszta, Żaneta & Ramakrishnan, Uma & Macdonald, David W., 2024. "Differentially biased sampling strategies reveal the non-stationarity of species distribution models for Indian small felids," Ecological Modelling, Elsevier, vol. 493(C).
    5. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Ana Cristina Mosebo Fernandes & Rebeca Quintero Gonzalez & Marie Ann Lenihan-Clarke & Ezra Francis Leslie Trotter & Jamal Jokar Arsanjani, 2020. "Machine Learning for Conservation Planning in a Changing Climate," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    7. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    8. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    9. Wentao Yang & Huaxi He & Dongsheng Wei & Hao Chen, 2022. "Generating pseudo-absence samples of invasive species based on outlier detection in the geographical characteristic space," Journal of Geographical Systems, Springer, vol. 24(2), pages 261-279, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broussin, Joséphine & Mouchet, Maud & Goberville, Eric, 2024. "Generating pseudo-absences in the ecological space improves the biological relevance of response curves in species distribution models," Ecological Modelling, Elsevier, vol. 498(C).
    2. Coro, Gianpaolo & Pagano, Pasquale & Ellenbroek, Anton, 2013. "Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae," Ecological Modelling, Elsevier, vol. 268(C), pages 55-63.
    3. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    4. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    5. Brice B Hanberry & Hong S He & Brian J Palik, 2012. "Pseudoabsence Generation Strategies for Species Distribution Models," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    6. Whitford, Anna M. & Shipley, Benjamin R. & McGuire, Jenny L., 2024. "The influence of the number and distribution of background points in presence-background species distribution models," Ecological Modelling, Elsevier, vol. 488(C).
    7. Hengl, Tomislav & Sierdsema, Henk & Radović, Andreja & Dilo, Arta, 2009. "Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging," Ecological Modelling, Elsevier, vol. 220(24), pages 3499-3511.
    8. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    9. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    10. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    11. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    12. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    13. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    14. repec:plo:pone00:0184193 is not listed on IDEAS
    15. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    16. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    17. Riza, Lala Septem & Bergmeir, Christoph & Herrera, Francisco & Benítez, José M., 2015. "frbs: Fuzzy Rule-Based Systems for Classification and Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i06).
    18. Karin Wolffhechel & Amanda C Hahn & Hanne Jarmer & Claire I Fisher & Benedict C Jones & Lisa M DeBruine, 2015. "Testing the Utility of a Data-Driven Approach for Assessing BMI from Face Images," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    19. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    20. Doko, Tomoko & Fukui, Hiromichi & Kooiman, Andre & Toxopeus, A.G. & Ichinose, Tomohiro & Chen, Wenbo & Skidmore, A.K., 2011. "Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan," Ecological Modelling, Elsevier, vol. 222(3), pages 748-761.
    21. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0071218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.