IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v388y2018icp1-9.html
   My bibliography  Save this article

The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift

Author

Listed:
  • Liang, Wanwan
  • Papeş, Monica
  • Tran, Liem
  • Grant, Jerome
  • Washington-Allen, Robert
  • Stewart, Scott
  • Wiggins, Gregory

Abstract

Transferability of species distribution models (SDMs) is key to predicting invasion patterns and can be challenged if niche shift occurs in the invaded range. When using native occurrences to estimate potential invasions with presence-only modeling methods, it is important to constrain the pseudo-absence (PA) sampling to the species’ native range. However, some studies including highly cited ones, do not follow this approach to selecting PA samples. In this research, we addressed two questions using an invasive species in the United States (U.S.), kudzu bug (Megacopta cribraria): 1) is model transferability challenged by a non-adaptive niche shift? and 2) is model performance affected by use of PA samples from outside the native range of the species? Kudzu bug is native to Asia, with recently observed non-adaptive niche shift in the U.S. To answer the first question, we quantified the environmental space anisotropy and non-adaptive niche change, and then evaluated the performances of seven SDMs. To answer the second question, we further compared the interpolation and transferability of seven SDMs trained with PAs from the native range and from both native and invaded ranges. We confirmed that the environmental space anisotropy (P = 0.01) and non-adaptive niche change (P = 0.01) are both statistically significant. Of the seven SDMs used, four models had transferability indices higher than 0.9. Boosted regression tree and random forests both had good interpolation and transferability (AUC>0.80 and kappa>0.60), whereas three other models showed good interpolation and fair transferability (AUC>0.70 and kappa>0.40). Inclusion of pseudo-absences from the invaded range significantly increased the interpolation (P < 0.001) but decreased the transferability (P < 0.01) of almost all models. Our findings suggest that SDMs can show good transferability with non-adaptive niche shift, thus native occurrence information should be used in similar situation. We confirmed that it is crucial to constrain the PAs to the same spatial range as presences to accurately model potential invasions.

Suggested Citation

  • Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
  • Handle: RePEc:eee:ecomod:v:388:y:2018:i:c:p:1-9
    DOI: 10.1016/j.ecolmodel.2018.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018303156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    2. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    3. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belinda Gallardo & Sven Bacher & Ana Marcia Barbosa & Laure Gallien & Pablo González-Moreno & Víctor Martínez-Bolea & Cascade Sorte & Giovanni Vimercati & Montserrat Vilà, 2024. "Risks posed by invasive species to the provision of ecosystem services in Europe," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broussin, Joséphine & Mouchet, Maud & Goberville, Eric, 2024. "Generating pseudo-absences in the ecological space improves the biological relevance of response curves in species distribution models," Ecological Modelling, Elsevier, vol. 498(C).
    2. Coro, Gianpaolo & Pagano, Pasquale & Ellenbroek, Anton, 2013. "Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae," Ecological Modelling, Elsevier, vol. 268(C), pages 55-63.
    3. Domisch, Sami & Kuemmerlen, Mathias & Jähnig, Sonja C. & Haase, Peter, 2013. "Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota," Ecological Modelling, Elsevier, vol. 257(C), pages 1-10.
    4. Kuemmerlen, Mathias & Schmalz, Britta & Guse, Björn & Cai, Qinghua & Fohrer, Nicola & Jähnig, Sonja C., 2014. "Integrating catchment properties in small scale species distribution models of stream macroinvertebrates," Ecological Modelling, Elsevier, vol. 277(C), pages 77-86.
    5. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    6. repec:plo:pone00:0184193 is not listed on IDEAS
    7. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    8. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    9. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    10. Christian König & Patrick Weigelt & Julian Schrader & Amanda Taylor & Jens Kattge & Holger Kreft, 2019. "Biodiversity data integration—the significance of data resolution and domain," PLOS Biology, Public Library of Science, vol. 17(3), pages 1-16, March.
    11. van Steenderen, Clarke J.M. & Sutton, Guy F., 2024. "Climate covariate selection influences MaxEnt model predictions and predictive accuracy under current and future climates," Ecological Modelling, Elsevier, vol. 498(C).
    12. Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).
    13. Rana, Divyashree & Sartor, Caroline Charão & Chiaverini, Luca & Cushman, Samuel Alan & Kaszta, Żaneta & Ramakrishnan, Uma & Macdonald, David W., 2024. "Differentially biased sampling strategies reveal the non-stationarity of species distribution models for Indian small felids," Ecological Modelling, Elsevier, vol. 493(C).
    14. repec:plo:pone00:0012899 is not listed on IDEAS
    15. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    16. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    17. repec:plo:pone00:0148485 is not listed on IDEAS
    18. Saupe, E.E. & Barve, V. & Myers, C.E. & Soberón, J. & Barve, N. & Hensz, C.M. & Peterson, A.T. & Owens, H.L. & Lira-Noriega, A., 2012. "Variation in niche and distribution model performance: The need for a priori assessment of key causal factors," Ecological Modelling, Elsevier, vol. 237, pages 11-22.
    19. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    20. Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
    21. Jiménez, Laura & Soberón, Jorge & Christen, J. Andrés & Soto, Desireé, 2019. "On the problem of modeling a fundamental niche from occurrence data," Ecological Modelling, Elsevier, vol. 397(C), pages 74-83.
    22. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    23. Sor, Ratha & Park, Young-Seuk & Boets, Pieter & Goethals, Peter L.M. & Lek, Sovan, 2017. "Effects of species prevalence on the performance of predictive models," Ecological Modelling, Elsevier, vol. 354(C), pages 11-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:388:y:2018:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.