IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v268y2013icp55-63.html
   My bibliography  Save this article

Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae

Author

Listed:
  • Coro, Gianpaolo
  • Pagano, Pasquale
  • Ellenbroek, Anton

Abstract

The order Coelacanthiformes, once thought extinct, is much studied mainly because it contains species that share characteristics with lungfishes and tetrapods. Only a few years ago living specimens were discovered to science, and observations are so rare that the species are considered to be critically endangered. Observations include Latimeria chalumnae in deep waters of the coast of south eastern Africa while Latimeria menadoensis is known from similar habitats in Indonesian waters. Because of the interest around these enigmatic species, Ecological Niche Modelling techniques have been applied to estimate their distribution. The underlying assumption is that the environmental characteristics of the observation points are representative for the species. In this article we evaluate the difference in the output between the niche distributions produced by two expert systems and by two models based on Artificial Neural Networks. We evaluate the predictive behaviour of such models by focusing on L. chalumnae, as more observations are available for this species with respect to L. menadoensis. Finally, we assess the reliability of the maps by numerically evaluating the representativeness of the environmental characteristics in the observation locations, with respect to an area where the models show significant differences. This approach is different from previous ones because one of the expert systems is used to infer pseudo-absence points, that are successively employed to feed a Neural Network. One of the models based on this Neural Network is used to estimate the potential distribution and to produce a more extended map. The method promises to be applicable to other species with few observations, and allows to exploit the power of presence∖absence based techniques.

Suggested Citation

  • Coro, Gianpaolo & Pagano, Pasquale & Ellenbroek, Anton, 2013. "Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae," Ecological Modelling, Elsevier, vol. 268(C), pages 55-63.
  • Handle: RePEc:eee:ecomod:v:268:y:2013:i:c:p:55-63
    DOI: 10.1016/j.ecolmodel.2013.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013003980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    2. Ready, Jonathan & Kaschner, Kristin & South, Andy B. & Eastwood, Paul D. & Rees, Tony & Rius, Josephine & Agbayani, Eli & Kullander, Sven & Froese, Rainer, 2010. "Predicting the distributions of marine organisms at the global scale," Ecological Modelling, Elsevier, vol. 221(3), pages 467-478.
    3. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    4. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coro, Gianpaolo & Magliozzi, Chiara & Vanden Berghe, Edward & Bailly, Nicolas & Ellenbroek, Anton & Pagano, Pasquale, 2016. "Estimating absence locations of marine species from data of scientific surveys in OBIS," Ecological Modelling, Elsevier, vol. 323(C), pages 61-76.
    2. Coro, Gianpaolo & Magliozzi, Chiara & Ellenbroek, Anton & Pagano, Pasquale, 2015. "Improving data quality to build a robust distribution model for Architeuthis dux," Ecological Modelling, Elsevier, vol. 305(C), pages 29-39.
    3. Coro, Gianpaolo, 2020. "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate," Ecological Modelling, Elsevier, vol. 431(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broussin, Joséphine & Mouchet, Maud & Goberville, Eric, 2024. "Generating pseudo-absences in the ecological space improves the biological relevance of response curves in species distribution models," Ecological Modelling, Elsevier, vol. 498(C).
    2. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    3. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    4. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    5. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    6. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    7. Domisch, Sami & Kuemmerlen, Mathias & Jähnig, Sonja C. & Haase, Peter, 2013. "Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota," Ecological Modelling, Elsevier, vol. 257(C), pages 1-10.
    8. Brice B Hanberry & Hong S He & Brian J Palik, 2012. "Pseudoabsence Generation Strategies for Species Distribution Models," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    9. Senait D Senay & Susan P Worner & Takayoshi Ikeda, 2013. "Novel Three-Step Pseudo-Absence Selection Technique for Improved Species Distribution Modelling," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-16, August.
    10. Kuemmerlen, Mathias & Schmalz, Britta & Guse, Björn & Cai, Qinghua & Fohrer, Nicola & Jähnig, Sonja C., 2014. "Integrating catchment properties in small scale species distribution models of stream macroinvertebrates," Ecological Modelling, Elsevier, vol. 277(C), pages 77-86.
    11. Whitford, Anna M. & Shipley, Benjamin R. & McGuire, Jenny L., 2024. "The influence of the number and distribution of background points in presence-background species distribution models," Ecological Modelling, Elsevier, vol. 488(C).
    12. Hengl, Tomislav & Sierdsema, Henk & Radović, Andreja & Dilo, Arta, 2009. "Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging," Ecological Modelling, Elsevier, vol. 220(24), pages 3499-3511.
    13. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    14. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    15. repec:plo:pone00:0184193 is not listed on IDEAS
    16. Doko, Tomoko & Fukui, Hiromichi & Kooiman, Andre & Toxopeus, A.G. & Ichinose, Tomohiro & Chen, Wenbo & Skidmore, A.K., 2011. "Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan," Ecological Modelling, Elsevier, vol. 222(3), pages 748-761.
    17. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    18. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    19. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    20. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    21. Christian König & Patrick Weigelt & Julian Schrader & Amanda Taylor & Jens Kattge & Holger Kreft, 2019. "Biodiversity data integration—the significance of data resolution and domain," PLOS Biology, Public Library of Science, vol. 17(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:268:y:2013:i:c:p:55-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.