IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0046247.html
   My bibliography  Save this article

Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion

Author

Listed:
  • Gengping Zhu
  • Matthew J Petersen
  • Wenjun Bu

Abstract

Background: The Bean plataspid (Megacopta cribraria) (Hemiptera: Pentatomidae), native to Asia, is becoming an invasive species in North America; its potential spread to soybean producing areas in the US is of great concern. Ecological niche modelling (ENM) has been used increasingly in predicting invasive species' potential distribution; however, poor niche model transferability was sometimes reported, leading to the artifactual conclusion of niche differentiation during species' invasion. Methodology/Principals: We aim to improve the geographical transferability of ENM via environmental variable selection to predict the potential distribution of Bean plataspid invasion. Sixteen environmental dimensions between native and introduced Bean plataspid populations were compared, and classified into two datasets with different degrees of discrepancy by the interquartile range (IQR) overlap in boxplot. Niche models based on these two datasets were compared in native model prediction and invading model projection. Classical niche model approaches (i.e., model calibrated on native range and transferred outside) were used to anticipate the potential distribution of Bean plataspid invasion. Conclusions/Significance: Niche models based on the two datasets showed little difference in native model predictions; however, when projecting onto the introduced area, models based on the environmental datasets showing low discrepancy among ranges recovered good model transferability in predicting the newly established population of Bean plataspid in the US. Recommendations were made for selecting biological meaningful environmental dimensions of low discrepancy among ranges to improve niche model transferability among these geographically separated areas. Outside of its native range, areas with invasion potential include the southeastern US in North America, southwestern Europe, southeastern South America, southern Africa, and the eastern coastal Australia.

Suggested Citation

  • Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
  • Handle: RePEc:plo:pone00:0046247
    DOI: 10.1371/journal.pone.0046247
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046247
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0046247&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0046247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dennis Rödder & Sebastian Schmidtlein & Michael Veith & Stefan Lötters, 2009. "Alien Invasive Slider Turtle in Unpredicted Habitat: A Matter of Niche Shift or of Predictors Studied?," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-9, November.
    2. Gengping Zhu & Wenjun Bu & Yubao Gao & Guoqing Liu, 2012. "Potential Geographic Distribution of Brown Marmorated Stink Bug Invasion ( Halyomorpha halys )," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-10, February.
    3. Sillero, Neftalí, 2011. "What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods," Ecological Modelling, Elsevier, vol. 222(8), pages 1343-1346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    2. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    3. Phillips, Sierra J. & Pasternack, Gregory B. & Larrieu, Kenneth, 2025. "Development and testing of a mechanistic potential niche model of riparian tree seedling recruitment," Ecological Modelling, Elsevier, vol. 501(C).
    4. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    5. Sillero, Neftalí & Campos, João Carlos & Arenas-Castro, Salvador & Barbosa, A.Márcia, 2023. "A curated list of R packages for ecological niche modelling," Ecological Modelling, Elsevier, vol. 476(C).
    6. Rajendra K. Meena & Maneesh S. Bhandari & Pawan Kumar Thakur & Nitika Negi & Shailesh Pandey & Rama Kant & Rajesh Sharma & Netrananda Sahu & Ram Avtar, 2024. "MaxEnt-Based Potential Distribution Mapping and Range Shift under Future Climatic Scenarios for an Alpine Bamboo Thamnocalamus spathiflorus in Northwestern Himalayas," Land, MDPI, vol. 13(7), pages 1-18, June.
    7. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    8. Zhu, Gengping & Fan, Jingyu & Peterson, A. Townsend, 2021. "Cautions in weighting individual ecological niche models in ensemble forecasting," Ecological Modelling, Elsevier, vol. 448(C).
    9. Rodrigues, Lucas dos Santos & Daudt, Nicholas Winterle & Cardoso, Luis Gustavo & Kinas, Paul Gerhard & Conesa, David & Pennino, Maria Grazia, 2023. "Species distribution modelling in the Southwestern Atlantic Ocean: A systematic review and trends," Ecological Modelling, Elsevier, vol. 486(C).
    10. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    11. Vladimír Hemala & Petr Kment, 2017. "First record of Halyomorpha halys and mass occurrence of Nezara viridula in Slovakia (Hemiptera: Heteroptera: Pentatomidae)," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 53(4), pages 247-253.
    12. Fernandez, Marc & Sillero, Neftali & Yesson, Chris, 2022. "To be or not to be: the role of absences in niche modelling for highly mobile species in dynamic marine environments," Ecological Modelling, Elsevier, vol. 471(C).
    13. Cesar A Marchioro, 2016. "Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    14. Yuncheng Zhao & Mingyue Zhao & Lei Zhang & Chunyi Wang & Yinlong Xu, 2021. "Predicting Possible Distribution of Tea ( Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    15. Rodríguez-Rey, Marta & Jiménez-Valverde, Alberto & Acevedo, Pelayo, 2013. "Species distribution models predict range expansion better than chance but not better than a simple dispersal model," Ecological Modelling, Elsevier, vol. 256(C), pages 1-5.
    16. Urtzi Enriquez-Urzelai & Nicola Bernardo & Gregorio Moreno-Rueda & Albert Montori & Gustavo Llorente, 2019. "Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians," Climatic Change, Springer, vol. 154(1), pages 289-301, May.
    17. Zhenghan Chen & Tianzhen Tang & Fan Zhang & Mingran Deng, 2023. "Symbiosis-Evolution Game and Scenario-Simulation Analysis of Advanced Manufacturing Enterprises from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    18. de Rigo, Daniele & Caudullo, Giovanni & San-Miguel-Ayanz, Jesús & Barredo, José I., 2017. "Robust modelling of the impacts of climate change on the habitat suitability of forest tree species," MPRA Paper 78623, University Library of Munich, Germany.
    19. Siwen Hao & Donglin Zhang & Yafeng Wen, 2024. "Potential Geographical Distribution of Lagerstroemia excelsa under Climate Change," Agriculture, MDPI, vol. 14(2), pages 1-14, January.
    20. P Dilip Venugopal & Galen P Dively & Ames Herbert & Sean Malone & Joanne Whalen & William O Lamp, 2016. "Contrasting Role of Temperature in Structuring Regional Patterns of Invasive and Native Pestilential Stink Bugs," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-19, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0046247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.