IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p191-d1327242.html
   My bibliography  Save this article

Potential Geographical Distribution of Lagerstroemia excelsa under Climate Change

Author

Listed:
  • Siwen Hao

    (College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
    Hunan Big Data Engineering Center of Natural Protected Areas and Landscape Resources, Changsha 410004, China)

  • Donglin Zhang

    (Department of Horticulture, University of Georgia, Athens, GA 30602, USA)

  • Yafeng Wen

    (College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
    Hunan Big Data Engineering Center of Natural Protected Areas and Landscape Resources, Changsha 410004, China)

Abstract

As a popular ornamental plant and an effective species for controlling rocky desertification, the identification and protection of potential habitats of Lagerstroemia excelsa habitats hold significant importance. To gain a comprehensive understanding of the natural resources and growing conditions for L. excelsa , predictive modeling was employed to estimate the potential geographical distribution of the species during the Mid-Holocene (MH), the present, and the years 2050 and 2070. The projection was based on current occurrences, and we selected the relevant environmental attributes through the Pearson analysis and the Maximum Entropy Model (MaxEnt). The analysis revealed that temperature and precipitation are the primary environmental factors influencing L. excelsa distribution, with the Wuling Mountains identified as a center distribution hub for this species. The anticipated suitable area for L. excelsa is expected to experience marginal expansion under future climate scenarios. These results are invaluable for guiding the protection and sustainable utilization of L. excelsa in the face of climate change. Additionally, the data generated can be leveraged for enhanced introduction, breeding, selection, and cultivation of L. excelsa , taking into account the challenges posed by global warming.

Suggested Citation

  • Siwen Hao & Donglin Zhang & Yafeng Wen, 2024. "Potential Geographical Distribution of Lagerstroemia excelsa under Climate Change," Agriculture, MDPI, vol. 14(2), pages 1-14, January.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:191-:d:1327242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sillero, Neftalí, 2011. "What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods," Ecological Modelling, Elsevier, vol. 222(8), pages 1343-1346.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    2. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    3. Sillero, Neftalí & Campos, João Carlos & Arenas-Castro, Salvador & Barbosa, A.Márcia, 2023. "A curated list of R packages for ecological niche modelling," Ecological Modelling, Elsevier, vol. 476(C).
    4. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    5. Rodrigues, Lucas dos Santos & Daudt, Nicholas Winterle & Cardoso, Luis Gustavo & Kinas, Paul Gerhard & Conesa, David & Pennino, Maria Grazia, 2023. "Species distribution modelling in the Southwestern Atlantic Ocean: A systematic review and trends," Ecological Modelling, Elsevier, vol. 486(C).
    6. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    7. Fernandez, Marc & Sillero, Neftali & Yesson, Chris, 2022. "To be or not to be: the role of absences in niche modelling for highly mobile species in dynamic marine environments," Ecological Modelling, Elsevier, vol. 471(C).
    8. Yuncheng Zhao & Mingyue Zhao & Lei Zhang & Chunyi Wang & Yinlong Xu, 2021. "Predicting Possible Distribution of Tea ( Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    9. Urtzi Enriquez-Urzelai & Nicola Bernardo & Gregorio Moreno-Rueda & Albert Montori & Gustavo Llorente, 2019. "Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians," Climatic Change, Springer, vol. 154(1), pages 289-301, May.
    10. Zhenghan Chen & Tianzhen Tang & Fan Zhang & Mingran Deng, 2023. "Symbiosis-Evolution Game and Scenario-Simulation Analysis of Advanced Manufacturing Enterprises from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    11. de Rigo, Daniele & Caudullo, Giovanni & San-Miguel-Ayanz, Jesús & Barredo, José I., 2017. "Robust modelling of the impacts of climate change on the habitat suitability of forest tree species," MPRA Paper 78623, University Library of Munich, Germany.
    12. Rutten, Anneleen & Casaer, Jim & Swinnen, Kristijn R.R. & Herremans, Marc & Leirs, Herwig, 2019. "Future distribution of wild boar in a highly anthropogenic landscape: Models combining hunting bag and citizen science data," Ecological Modelling, Elsevier, vol. 411(C).
    13. Lewis A. Jones & Philip D. Mannion & Alexander Farnsworth & Fran Bragg & Daniel J. Lunt, 2022. "Climatic and tectonic drivers shaped the tropical distribution of coral reefs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Parasiewicz, Piotr & Castelli, Elena & Rogers, Joseph N. & Plunkett, Ethan, 2012. "Multiplex modeling of physical habitat for endangered freshwater mussels," Ecological Modelling, Elsevier, vol. 228(C), pages 66-75.
    15. Özgür Kamer Aksoy, 2022. "Predicting the Potential Distribution Area of the Platanus orientalis L. in Turkey Today and in the Future," Sustainability, MDPI, vol. 14(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:191-:d:1327242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.