IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v411y2019ics0304380019303126.html
   My bibliography  Save this article

Future distribution of wild boar in a highly anthropogenic landscape: Models combining hunting bag and citizen science data

Author

Listed:
  • Rutten, Anneleen
  • Casaer, Jim
  • Swinnen, Kristijn R.R.
  • Herremans, Marc
  • Leirs, Herwig

Abstract

Wild boar is one of the most widespread mammals of the world and in many regions wild boar populations continue to expand. Especially in highly anthropogenic landscapes, increasing numbers of wild boar lead to a rising number of contacts with human activities causing human-wildlife impacts. In the heavily fragmented landscape of Flanders (northern Belgium) where the wild boar re-appeared in 2006 after more than half a century of absence, it is crucial to get a better understanding of the probable further distribution of wild boar in order to assess potential impacts in the near future. Wild boar occurrences have been collected by two citizen science programs: through an online observation platform and based on the reported locations of wild boar shot by hunters. This allowed us to construct a MaxEnt habitat suitability model. We constructed a new approach to define background manipulation to correct for sampling bias due to uneven sampling effort or due to areas in which hunting is not allowed based on the construction of bias files using this information. Model outcomes based on this new approach for background manipulation were compared with the known method of spatial thinning. All model outcomes were found comparable reflecting the utility of our new approach when limited data are available and spatial thinning would result in insufficient data for modelling. Our MaxEnt models show that coniferous forest, deciduous forest, maize, scrub and other low cover play a key role in increasing the habitat suitability for wild boar. Built up areas and the extent of habitat diversity only had a minor influence on habitat suitability reflecting wild boars’ behavioural flexibility to adapt to human-dominated landscapes. Unoccupied suitable habitat is mainly found in the centre of Flanders, although highly scattered. Habitat suitability in the West of Flanders was limited.

Suggested Citation

  • Rutten, Anneleen & Casaer, Jim & Swinnen, Kristijn R.R. & Herremans, Marc & Leirs, Herwig, 2019. "Future distribution of wild boar in a highly anthropogenic landscape: Models combining hunting bag and citizen science data," Ecological Modelling, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:ecomod:v:411:y:2019:i:c:s0304380019303126
    DOI: 10.1016/j.ecolmodel.2019.108804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019303126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    2. Sillero, Neftalí, 2011. "What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods," Ecological Modelling, Elsevier, vol. 222(8), pages 1343-1346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Eupen, Camille & Maes, Dirk & Herremans, Marc & Swinnen, Kristijn R.R. & Somers, Ben & Luca, Stijn, 2021. "The impact of data quality filtering of opportunistic citizen science data on species distribution model performance," Ecological Modelling, Elsevier, vol. 444(C).
    2. Karami, Peyman & Tavakoli, Sajad, 2022. "Identification and analysis of areas prone to conflict with wild boar (Sus scrofa) in the vineyards of Malayer County, western Iran," Ecological Modelling, Elsevier, vol. 471(C).
    3. Van Eupen, Camille & Maes, Dirk & Herremans, Marc & Swinnen, Kristijn R.R. & Somers, Ben & Luca, Stijn, 2022. "Species profiles support recommendations for quality filtering of opportunistic citizen science data," Ecological Modelling, Elsevier, vol. 467(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    2. Fernandez, Marc & Sillero, Neftali & Yesson, Chris, 2022. "To be or not to be: the role of absences in niche modelling for highly mobile species in dynamic marine environments," Ecological Modelling, Elsevier, vol. 471(C).
    3. B Eugene Smith & Mark K Johnston & Robert Lücking, 2016. "From GenBank to GBIF: Phylogeny-Based Predictive Niche Modeling Tests Accuracy of Taxonomic Identifications in Large Occurrence Data Repositories," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    4. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    5. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    6. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    7. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    8. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    9. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    10. Dana H. Mills & Michael L. McKinney, 2024. "Climate Change and Jump Dispersal Drive Invasion of the Rosy Wolfsnail ( Euglandina rosea ) in the United States," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
    11. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    12. Sillero, Neftalí & Campos, João Carlos & Arenas-Castro, Salvador & Barbosa, A.Márcia, 2023. "A curated list of R packages for ecological niche modelling," Ecological Modelling, Elsevier, vol. 476(C).
    13. Van Eupen, Camille & Maes, Dirk & Herremans, Marc & Swinnen, Kristijn R.R. & Somers, Ben & Luca, Stijn, 2021. "The impact of data quality filtering of opportunistic citizen science data on species distribution model performance," Ecological Modelling, Elsevier, vol. 444(C).
    14. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    15. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    16. Rodrigues, Lucas dos Santos & Daudt, Nicholas Winterle & Cardoso, Luis Gustavo & Kinas, Paul Gerhard & Conesa, David & Pennino, Maria Grazia, 2023. "Species distribution modelling in the Southwestern Atlantic Ocean: A systematic review and trends," Ecological Modelling, Elsevier, vol. 486(C).
    17. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    18. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    19. Marsh, Charles J. & Gavish, Yoni & Kuemmerlen, Mathias & Stoll, Stefan & Haase, Peter & Kunin, William E., 2023. "SDM profiling: A tool for assessing the information-content of sampled and unsampled locations for species distribution models," Ecological Modelling, Elsevier, vol. 475(C).
    20. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:411:y:2019:i:c:s0304380019303126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.