IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232078.html
   My bibliography  Save this article

Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection

Author

Listed:
  • Christophe Botella
  • Alexis Joly
  • Pascal Monestiez
  • Pierre Bonnet
  • François Munoz

Abstract

The use of naturalist mobile applications have dramatically increased during last years, and provide huge amounts of accurately geolocated species presences records. Integrating this novel type of data in species distribution models (SDMs) raises specific methodological questions. Presence-only SDM methods require background points, which should be consistent with sampling effort across the environmental space to avoid bias. A standard approach is to use uniformly distributed background points (UB). When multiple species are sampled, another approach is to use a set of occurrences from a Target-Group of species as background points (TGOB). We here investigate estimation biases when applying TGOB and UB to opportunistic naturalist occurrences. We modelled species occurrences and observation process as a thinned Poisson point process, and express asymptotic likelihoods of UB and TGOB as a divergence between environmental densities, in order to characterize biases in species niche estimation. To illustrate our results, we simulated species occurrences with different types of niche (specialist/generalist, typical/marginal), sampling effort and TG species density. We conclude that none of the methods are immune to estimation bias, although the pitfalls are different: For UB, the niche estimate fits tends towards the product of niche and sampling densities. TGOB is unaffected by heterogeneous sampling effort, and even unbiased if the cumulated density of the TG species is constant. If it is concentrated, the estimate deviates from the range of TG density. The user must select the group of species to ensure that they are jointly abundant over the broadest environmental sub-area.

Suggested Citation

  • Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0232078
    DOI: 10.1371/journal.pone.0232078
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232078
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232078&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    2. Mark Berman & T. Rolf Turner, 1992. "Approximating Point Process Likelihoods with Glim," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 31-38, March.
    3. David I Warton & Ian W Renner & Daniel Ramp, 2013. "Model-Based Control of Observer Bias for the Analysis of Presence-Only Data in Ecology," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    4. Alaaeldin Soultan & Kamran Safi, 2017. "The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-19, November.
    5. Avishek Chakraborty & Alan E. Gelfand & Adam M. Wilson & Andrew M. Latimer & John A. Silander, 2011. "Point pattern modelling for degraded presence‐only data over large regions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(5), pages 757-776, November.
    6. Ian W. Renner & David I. Warton, 2013. "Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology," Biometrics, The International Biometric Society, vol. 69(1), pages 274-281, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arpit Deomurari & Ajay Sharma & Dipankar Ghose & Randeep Singh, 2023. "Potential Range Map Dataset of Indian Birds," Data, MDPI, vol. 8(9), pages 1-11, September.
    2. Steen, Bart & Broennimann, Olivier & Maiorano, Luigi & Guisan, Antoine, 2024. "How sensitive are species distribution models to different background point selection strategies? A test with species at various equilibrium levels," Ecological Modelling, Elsevier, vol. 493(C).
    3. Hysen, Logan & Wan, Ho Yi & Jantz, Patrick & Gagnon, Jeff & Cushman, Samuel A., 2025. "Variability in habitat selection between herds for a widespread ungulate," Ecological Modelling, Elsevier, vol. 501(C).
    4. Philipp Brun & Dirk N. Karger & Damaris Zurell & Patrice Descombes & Lucienne C. Witte & Riccardo Lutio & Jan Dirk Wegner & Niklaus E. Zimmermann, 2024. "Multispecies deep learning using citizen science data produces more informative plant community models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    2. Jakub Stoklosa & Wen-Han Hwang & David I Warton, 2023. "A general algorithm for error-in-variables regression modelling using Monte Carlo expectation maximization," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-21, April.
    3. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    4. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    5. Jeffrey Daniel & Julie Horrocks & Gary J. Umphrey, 2020. "Efficient Modelling of Presence-Only Species Data via Local Background Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 90-111, March.
    6. Ortner, Olivia & Wallentin, Gudrun, 2020. "Integration of landscape metric surfaces derived from vector data improves species distribution models," Ecological Modelling, Elsevier, vol. 431(C).
    7. Ji-Zhong Wan & Chun-Jing Wang & Fei-Hai Yu, 2017. "Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change," Climatic Change, Springer, vol. 144(2), pages 303-316, September.
    8. Amanda M E D’Andrea & Vera L D Tomazella & Hassan M Aljohani & Pedro L Ramos & Marco P Almeida & Francisco Louzada & Bruna A W Verssani & Amanda B Gazon & Ahmed Z Afify, 2021. "Objective bayesian analysis for multiple repairable systems," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-19, November.
    9. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    10. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    11. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    12. Díaz-Vallejo, Mauricio & Peña-Peniche, Alexander & Mota-Vargas, Claudio & Piña-Torres, Javier & Valencia-Rodríguez, Daniel & Rangel-Rivera, Coral E. & Gaviria-Hernández, Juliana & Rojas-Soto, Octavio, 2024. "Analyses of the variable selection using correlation methods: An approach to the importance of statistical inferences in the modelling process," Ecological Modelling, Elsevier, vol. 498(C).
    13. repec:jss:jstsof:08:i16 is not listed on IDEAS
    14. Giuseppe Arbia & Patrizia Cella & Giuseppe Espa & Diego Giuliani, 2015. "A micro spatial analysis of firm demography: the case of food stores in the area of Trento (Italy)," Empirical Economics, Springer, vol. 48(3), pages 923-937, May.
    15. Holder, Anna M. & Markarian, Arev & Doyle, Jessie M. & Olson, John R., 2020. "Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations," Ecological Modelling, Elsevier, vol. 433(C).
    16. Dana H. Mills & Michael L. McKinney, 2024. "Climate Change and Jump Dispersal Drive Invasion of the Rosy Wolfsnail ( Euglandina rosea ) in the United States," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
    17. Qiyao Han & Greg Keeffe, 2019. "Mapping the Flow of Forest Migration through the City under Climate Change," Urban Planning, Cogitatio Press, vol. 4(1), pages 139-151.
    18. Van Eupen, Camille & Maes, Dirk & Herremans, Marc & Swinnen, Kristijn R.R. & Somers, Ben & Luca, Stijn, 2021. "The impact of data quality filtering of opportunistic citizen science data on species distribution model performance," Ecological Modelling, Elsevier, vol. 444(C).
    19. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    20. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    21. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.