IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232078.html
   My bibliography  Save this article

Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection

Author

Listed:
  • Christophe Botella
  • Alexis Joly
  • Pascal Monestiez
  • Pierre Bonnet
  • François Munoz

Abstract

The use of naturalist mobile applications have dramatically increased during last years, and provide huge amounts of accurately geolocated species presences records. Integrating this novel type of data in species distribution models (SDMs) raises specific methodological questions. Presence-only SDM methods require background points, which should be consistent with sampling effort across the environmental space to avoid bias. A standard approach is to use uniformly distributed background points (UB). When multiple species are sampled, another approach is to use a set of occurrences from a Target-Group of species as background points (TGOB). We here investigate estimation biases when applying TGOB and UB to opportunistic naturalist occurrences. We modelled species occurrences and observation process as a thinned Poisson point process, and express asymptotic likelihoods of UB and TGOB as a divergence between environmental densities, in order to characterize biases in species niche estimation. To illustrate our results, we simulated species occurrences with different types of niche (specialist/generalist, typical/marginal), sampling effort and TG species density. We conclude that none of the methods are immune to estimation bias, although the pitfalls are different: For UB, the niche estimate fits tends towards the product of niche and sampling densities. TGOB is unaffected by heterogeneous sampling effort, and even unbiased if the cumulated density of the TG species is constant. If it is concentrated, the estimate deviates from the range of TG density. The user must select the group of species to ensure that they are jointly abundant over the broadest environmental sub-area.

Suggested Citation

  • Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0232078
    DOI: 10.1371/journal.pone.0232078
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232078
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232078&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    2. Mark Berman & T. Rolf Turner, 1992. "Approximating Point Process Likelihoods with Glim," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 31-38, March.
    3. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    4. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    5. David I Warton & Ian W Renner & Daniel Ramp, 2013. "Model-Based Control of Observer Bias for the Analysis of Presence-Only Data in Ecology," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    6. Alaaeldin Soultan & Kamran Safi, 2017. "The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-19, November.
    7. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    8. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    9. Avishek Chakraborty & Alan E. Gelfand & Adam M. Wilson & Andrew M. Latimer & John A. Silander, 2011. "Point pattern modelling for degraded presence‐only data over large regions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(5), pages 757-776, November.
    10. Ian W. Renner & David I. Warton, 2013. "Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology," Biometrics, The International Biometric Society, vol. 69(1), pages 274-281, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arpit Deomurari & Ajay Sharma & Dipankar Ghose & Randeep Singh, 2023. "Potential Range Map Dataset of Indian Birds," Data, MDPI, vol. 8(9), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    2. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    3. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    4. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    5. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    6. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    7. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    8. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    9. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    10. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    11. World Bank, 2003. "Argentina : Reforming Policies and Institutions for Efficiency and Equity of Public Expenditures," World Bank Publications - Reports 14637, The World Bank Group.
    12. Ceretani, Andrea N. & Salva, Natalia N. & Tarzia, Domingo A., 2018. "Approximation of the modified error function," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 607-617.
    13. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    14. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    15. Brown, Jeffrey R., 2001. "Private pensions, mortality risk, and the decision to annuitize," Journal of Public Economics, Elsevier, vol. 82(1), pages 29-62, October.
    16. Mark Christensen, 2007. "What We Might Know (But Aren't Sure) About Public-Sector Accrual Accounting," Australian Accounting Review, CPA Australia, vol. 17(41), pages 51-65, March.
    17. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    18. Norma M Rantisi & Deborah Leslie, 2021. "In and against the neoliberal state? The precarious siting of work integration social enterprises (WISEs) as counter-movement in Montreal, Quebec," Environment and Planning A, , vol. 53(2), pages 349-370, March.
    19. Brunekreeft, Gert, 2004. "Market-based investment in electricity transmission networks: controllable flow," Utilities Policy, Elsevier, vol. 12(4), pages 269-281, December.
    20. Marc Peeters & Zeger Degraeve, 2004. "The Co-Printing Problem: A Packing Problem with a Color Constraint," Operations Research, INFORMS, vol. 52(4), pages 623-638, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.