Climate covariate selection influences MaxEnt model predictions and predictive accuracy under current and future climates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2024.110872
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
- Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
- Bell, David M. & Schlaepfer, Daniel R., 2016. "On the dangers of model complexity without ecological justification in species distribution modeling," Ecological Modelling, Elsevier, vol. 330(C), pages 50-59.
- Francesca Raffini & Giorgio Bertorelle & Roberto Biello & Guido D’Urso & Danilo Russo & Luciano Bosso, 2020. "From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe," Sustainability, MDPI, vol. 12(11), pages 1-38, June.
- Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
- Schuwirth, Nele & Borgwardt, Florian & Domisch, Sami & Friedrichs, Martin & Kattwinkel, Mira & Kneis, David & Kuemmerlen, Mathias & Langhans, Simone D. & Martínez-López, Javier & Vermeiren, Peter, 2019. "How to make ecological models useful for environmental management," Ecological Modelling, Elsevier, vol. 411(C).
- Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
- Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
- Melo-Merino, Sara M. & Reyes-Bonilla, Héctor & Lira-Noriega, Andrés, 2020. "Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence," Ecological Modelling, Elsevier, vol. 415(C).
- VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhiluo Zhou & Xiaohuang Liu & Run Liu & Jiufen Liu & Wenjie Liu & Qiu Yang & Xinping Luo & Ran Wang & Liyuan Xing & Honghui Zhao & Chao Wang, 2025. "Sugarcane Distribution Simulation and Climate Change Impact Analysis in China," Agriculture, MDPI, vol. 15(5), pages 1-14, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
- Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
- Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
- Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
- Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
- Zhenan Jin & Wentao Yu & Haoxiang Zhao & Xiaoqing Xian & Kaiting Jing & Nianwan Yang & Xinmin Lu & Wanxue Liu, 2022. "Potential Global Distribution of Invasive Alien Species, Anthonomus grandis Boheman, under Current and Future Climate Using Optimal MaxEnt Model," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
- Peter Läderach & Julian Ramirez–Villegas & Carlos Navarro-Racines & Carlos Zelaya & Armando Martinez–Valle & Andy Jarvis, 2017. "Climate change adaptation of coffee production in space and time," Climatic Change, Springer, vol. 141(1), pages 47-62, March.
- Boria, Robert A. & Blois, Jessica L., 2018. "The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus," Ecological Modelling, Elsevier, vol. 386(C), pages 83-88.
- Cao, Yong & DeWalt, R. Edward & Robinson, Jason L. & Tweddale, Tari & Hinz, Leon & Pessino, Massimo, 2013. "Using Maxent to model the historic distributions of stonefly species in Illinois streams: The effects of regularization and threshold selections," Ecological Modelling, Elsevier, vol. 259(C), pages 30-39.
- Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
- Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
- Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
- Antonio J. Mendoza-Fernández & Fabián Martínez-Hernández & Esteban Salmerón-Sánchez & Francisco J. Pérez-García & Blas Teruel & María E. Merlo & Juan F. Mota, 2020. "The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios," Land, MDPI, vol. 10(1), pages 1-15, December.
- Lucas Kruger, 2018. "Population Estimates of Trindade Petrel (Pterodroma arminjoniana) by Ensemble Nesting Habitat Modelling," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 10(4), pages 145-157, April.
- Cushman, S.A. & Kilshaw, K. & Campbell, R.D. & Kaszta, Z. & Gaywood, M. & Macdonald, D.W., 2024. "Comparing the performance of global, geographically weighted and ecologically weighted species distribution models for Scottish wildcats using GLM and Random Forest predictive modeling," Ecological Modelling, Elsevier, vol. 492(C).
- Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
- Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
- Wei Xu & Yuqi Miao & Shuaimeng Zhu & Jimin Cheng & Jingwei Jin, 2023. "Modelling the Geographical Distribution Pattern of Apple Trees on the Loess Plateau, China," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
- Mosai, Alseno K. & Tokwana, Bontle C. & Tutu, Hlanganani, 2022. "Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: A PHREEQC geochemical modelling code coupled to parameter estimation (PE," Ecological Modelling, Elsevier, vol. 465(C).
- Haoxiang Zhao & Shanqing Yi & Yu Zhang & Nianwan Yang & Jianyang Guo & Hongmei Li & Xiaoqing Xian & Wanxue Liu, 2024. "Estimating the Optimal Control Areas of Two Classical Biocontrol Agents Against the Fall Armyworm Based on Hotspot Matching Analysis," Agriculture, MDPI, vol. 14(12), pages 1-14, December.
More about this item
Keywords
Covariate selection; Model optimisation; Sensitivity scores; Species distribution modelling; WORLDCLIM data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002606. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.