IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2020i1p1-d466153.html
   My bibliography  Save this article

The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios

Author

Listed:
  • Antonio J. Mendoza-Fernández

    (Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain
    Departamento de Botánica, Unidad de Conservación Vegetal, Universidad de Granada, 18071 Granada, Spain)

  • Fabián Martínez-Hernández

    (Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain)

  • Esteban Salmerón-Sánchez

    (Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain)

  • Francisco J. Pérez-García

    (Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain)

  • Blas Teruel

    (Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain)

  • María E. Merlo

    (Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain)

  • Juan F. Mota

    (Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain)

Abstract

Maytenus senegalensis subsp. europaea is a shrub belonging to the Celastraceae family, whose only European populations are distributed discontinuously along the south-eastern coast of the Iberian Peninsula, forming plant communities with great ecological value, unique in Europe. As it is an endangered species that makes up plant communities with great palaeoecological significance, the development of species distribution models is of major interest under different climatic scenarios, past, present and future, based on the fact that the climate could play a relevant role in the distribution of this species, as well as in the conformation of the communities in which it is integrated. Palaeoecological models were generated for the Maximum Interglacial, Last Maximum Glacial and Middle Holocene periods. The results obtained showed that the widest distribution of this species, and the maximum suitability of its habitat, occurred during the Last Glacial Maximum, when the temperatures of the peninsular southeast were not as contrasting as those of the rest of the European continent and were favored by higher rainfall. Under these conditions, large territories could act as shelters during the glacial period, a hypothesis reflected in the model’s results for this period, which exhibit a further expansion of M. europaea ’ s ecological niche. The future projection of models in around 2070, for four Representative Concentration Pathways according to the fifth report of the Intergovernmental Panel on Climate Change, showed that the most favorable areas for this species would be Campo de Dalías (southern portion of Almería province) as it presents the bioclimatic characteristics of greater adjustment to M. europaea ’ s ecological niche model. Currently, some of the largest specimens of the species survive in the agricultural landscapes in the southern Spain. These areas are almost totally destroyed and heavily altered by intensive agriculture greenhouses, also causing a severe fragmentation of the habitat, which implies a prospective extinction scenario in the near future.

Suggested Citation

  • Antonio J. Mendoza-Fernández & Fabián Martínez-Hernández & Esteban Salmerón-Sánchez & Francisco J. Pérez-García & Blas Teruel & María E. Merlo & Juan F. Mota, 2020. "The Relict Ecosystem of Maytenus senegalensis subsp. europaea in an Agricultural Landscape: Past, Present and Future Scenarios," Land, MDPI, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:gam:jlands:v:10:y:2020:i:1:p:1-:d:466153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Virgili, Auriane & Racine, Mélanie & Authier, Matthieu & Monestiez, Pascal & Ridoux, Vincent, 2017. "Comparison of habitat models for scarcely detected species," Ecological Modelling, Elsevier, vol. 346(C), pages 88-98.
    2. Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
    3. Francesca Raffini & Giorgio Bertorelle & Roberto Biello & Guido D’Urso & Danilo Russo & Luciano Bosso, 2020. "From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe," Sustainability, MDPI, vol. 12(11), pages 1-38, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Kougioumoutzis & Alexandros Papanikolaou & Ioannis P. Kokkoris & Arne Strid & Panayotis Dimopoulos & Maria Panitsa, 2022. "Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    2. Khalin, Andrey A. & Postnikov, Eugene B., 2020. "A wavelet-based approach to revealing the Tweedie distribution type in sparse data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Zhenan Jin & Wentao Yu & Haoxiang Zhao & Xiaoqing Xian & Kaiting Jing & Nianwan Yang & Xinmin Lu & Wanxue Liu, 2022. "Potential Global Distribution of Invasive Alien Species, Anthonomus grandis Boheman, under Current and Future Climate Using Optimal MaxEnt Model," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    4. Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
    5. Fernandez, Marc & Sillero, Neftali & Yesson, Chris, 2022. "To be or not to be: the role of absences in niche modelling for highly mobile species in dynamic marine environments," Ecological Modelling, Elsevier, vol. 471(C).
    6. Dawei Liu & Chunping Xie & Chi Yung Jim & Yanjun Liu & Senlin Hou, 2023. "Predicting the Potential Distribution of the Alien Invasive Alligator Gar Atractosteus spatula in China," Sustainability, MDPI, vol. 15(8), pages 1-10, April.
    7. Jun Sakamoto, 2023. "Proposal of a Disrupted Road Detection Method in a Tsunami Event Using Deep Learning and Spatial Data," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    8. Bazzato, Erika & Rosati, Leonardo & Canu, Simona & Fiori, Michele & Farris, Emmanuele & Marignani, Michela, 2021. "High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot," Ecological Modelling, Elsevier, vol. 441(C).
    9. Francesco Bozzo & Michel Frem & Vincenzo Fucilli & Gianluigi Cardone & Paolo Francesco Garofoli & Stefania Geronimo & Alessandro Petrontino, 2022. "Landscape and Vegetation Patterns Zoning Is a Methodological Tool for Management Costs Implications Due to Xylella fastidiosa Invasion," Land, MDPI, vol. 11(7), pages 1-19, July.
    10. Xavier Barber & David Conesa & Antonio López-Quílez & Joaquín Martínez-Minaya & Iosu Paradinas & Maria Grazia Pennino, 2021. "Incorporating Biotic Information in Species Distribution Models: A Coregionalized Approach," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    11. Kaoutar El Handi & Majida Hafidi & Khaoula Habbadi & Maroun El Moujabber & Mohamed Ouzine & Abdellatif Benbouazza & Miloud Sabri & El Hassan Achbani, 2021. "Assessment of Ionomic, Phenolic and Flavonoid Compounds for a Sustainable Management of Xylella fastidiosa in Morocco," Sustainability, MDPI, vol. 13(14), pages 1-11, July.
    12. C. Emdad Haque & Parnali Dhar-Chowdhury & Shakhawat Hossain & David Walker, 2023. "Spatial Evaluation of Dengue Transmission and Vector Abundance in the City of Dhaka, Bangladesh," Geographies, MDPI, vol. 3(2), pages 1-18, April.
    13. Zhengxin Ji & Hejie Wei & Dong Xue & Mengxue Liu & Enxiang Cai & Weiqiang Chen & Xinwei Feng & Jiwei Li & Jie Lu & Yulong Guo, 2021. "Trade-Off and Projecting Effects of Land Use Change on Ecosystem Services under Different Policies Scenarios: A Case Study in Central China," IJERPH, MDPI, vol. 18(7), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2020:i:1:p:1-:d:466153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.