IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4269-d786648.html
   My bibliography  Save this article

Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece

Author

Listed:
  • Konstantinos Kougioumoutzis

    (Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece)

  • Alexandros Papanikolaou

    (Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece)

  • Ioannis P. Kokkoris

    (Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece)

  • Arne Strid

    (Bakkevej 6, DK-5853 Ørbæk, Denmark)

  • Panayotis Dimopoulos

    (Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece)

  • Maria Panitsa

    (Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece)

Abstract

The ongoing climate change has already left its imprint on species distributions, with rare, endemic species being more threatened. These changes are more prominent in regional biodiversity hotspots, such as Greece, which is already facing the short term impacts of human induced climate change. Greek flora hosts numerous endemic medicinal and aromatic plant taxa (MAPs), which are economically important and provide integral ecosystem services. The genus Nepeta is one of the largest Lamiaceae genera, containing several MAPs, yet, despite its taxonomical and economical significance, it remains vastly understudied in Greece. We explore the effects of climate change on the range of the Greek endemic Nepeta MAPs, via a species distribution models (SDMs) approach in an ensemble modeling framework, using soil, topographical and bioclimatic variables as predictors in three different time steps. By doing so, we attempt to estimate the current and future extinction risk of these taxa and to locate their current and future species richness hotspots in Greece. The taxa analyzed are expected to experience severe range retractions, with minor intraspecific variation across all time steps ( p > 0.05), driven mainly by soil- and aridity-related variables. The extinction risk status of only one taxon is predicted to worsen in the future, while all other taxa will remain threatened. Current species richness hotspots are mainly located in southern Greece and are projected to shift both altitudinally and latitudinally over time ( p < 0.01).

Suggested Citation

  • Konstantinos Kougioumoutzis & Alexandros Papanikolaou & Ioannis P. Kokkoris & Arne Strid & Panayotis Dimopoulos & Maria Panitsa, 2022. "Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4269-:d:786648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. Wilfried Thuiller & Miguel B. Araújo & Richard G. Pearson & Robert J. Whittaker & Lluís Brotons & Sandra Lavorel, 2004. "Uncertainty in predictions of extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    3. Mauro Fois & Gianluigi Bacchetta & Donatella Cogoni & Giuseppe Fenu, 2018. "Current and future effectiveness of the Natura 2000 network for protecting plant species in Sardinia: a nice and complex strategy in its raw state?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(2), pages 332-347, January.
    4. Fois, Mauro & Cuena-Lombraña, Alba & Fenu, Giuseppe & Bacchetta, Gianluigi, 2018. "Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions," Ecological Modelling, Elsevier, vol. 385(C), pages 124-132.
    5. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    6. Barnabas H. Daru & Harith Farooq & Alexandre Antonelli & Søren Faurby, 2020. "Endemism patterns are scale dependent," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Konstantinos Kougioumoutzis & Ioannis P. Kokkoris & Arne Strid & Thomas Raus & Panayotis Dimopoulos, 2021. "Climate-Change Impacts on the Southernmost Mediterranean Arctic-Alpine Plant Populations," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    8. Tsani, Stela Z., 2010. "Energy consumption and economic growth: A causality analysis for Greece," Energy Economics, Elsevier, vol. 32(3), pages 582-590, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tews, Joerg & Ferguson, Michael A.D. & Fahrig, Lenore, 2007. "Potential net effects of climate change on High Arctic Peary caribou: Lessons from a spatially explicit simulation model," Ecological Modelling, Elsevier, vol. 207(2), pages 85-98.
    2. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    3. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    4. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    5. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    6. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    7. Amin Zeraatkar & Farzaneh Khajoei Nasab, 2024. "Mapping the habitat suitability of endemic and sub-endemic almond species in Iran under current and future climate conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14859-14876, June.
    8. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.
    9. James I Watling & David N Bucklin & Carolina Speroterra & Laura A Brandt & Frank J Mazzotti & Stephanie S Romañach, 2013. "Validating Predictions from Climate Envelope Models," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.
    10. Kaushal, Kevin R. & Navrud, Ståle, 2018. "Global Biodiversity Costs of Climate Change. Improving the damage assessment of species loss in Integrated Assessment Models," Working Paper Series 4-2018, Norwegian University of Life Sciences, School of Economics and Business.
    11. Kim Meyer Hall & Heidi J. Albers & Majid Alkaee Taleghan & Thomas G. Dietterich, 2018. "Optimal Spatial-Dynamic Management of Stochastic Species Invasions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 403-427, June.
    12. Amintas Brandão Jr. & Lisa Rausch & América Paz Durán & Ciniro Costa Jr. & Seth A. Spawn & Holly K. Gibbs, 2020. "Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    13. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    14. Beaumont, Linda J. & Graham, Erin & Duursma, Daisy Englert & Wilson, Peter D. & Cabrelli, Abigail & Baumgartner, John B. & Hallgren, Willow & Esperón-Rodríguez, Manuel & Nipperess, David A. & Warren, , 2016. "Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?," Ecological Modelling, Elsevier, vol. 342(C), pages 135-146.
    15. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    16. Sébastien Bonthoux & Andrés Baselga & Gérard Balent, 2013. "Assessing Community-Level and Single-Species Models Predictions of Species Distributions and Assemblage Composition after 25 Years of Land Cover Change," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    17. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-8, April.
    18. Paavola, Jouni & Adger, W. Neil, 2006. "Fair adaptation to climate change," Ecological Economics, Elsevier, vol. 56(4), pages 594-609, April.
    19. Gössling, Stefan & Peeters, Paul & Ceron, Jean-Paul & Dubois, Ghislain & Patterson, Trista & Richardson, Robert B., 2005. "The eco-efficiency of tourism," Ecological Economics, Elsevier, vol. 54(4), pages 417-434, September.
    20. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4269-:d:786648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.