IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0037754.html
   My bibliography  Save this article

Human Movement Is Both Diffusive and Directed

Author

Listed:
  • Mark Padgham

Abstract

Understanding the influence of the built environment on human movement requires quantifying spatial structure in a general sense. Because of the difficulty of this task, studies of movement dynamics often ignore spatial heterogeneity and treat movement through journey lengths or distances alone. This study analyses public bicycle data from central London to reveal that, although journey distances, directions, and frequencies of occurrence are spatially variable, their relative spatial patterns remain largely constant, suggesting the influence of a fixed spatial template. A method is presented to describe this underlying space in terms of the relative orientation of movements toward, away from, and around locations of geographical or cultural significance. This produces two fields: one of convergence and one of divergence, which are able to accurately reconstruct the observed spatial variations in movement. These two fields also reveal categorical distinctions between shorter journeys merely serving diffusion away from significant locations, and longer journeys intentionally serving transport between spatially distinct centres of collective importance. Collective patterns of human movement are thus revealed to arise from a combination of both diffusive and directed movement, with aggregate statistics such as mean travel distances primarily determined by relative numbers of these two kinds of journeys.

Suggested Citation

  • Mark Padgham, 2012. "Human Movement Is Both Diffusive and Directed," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-11, May.
  • Handle: RePEc:plo:pone00:0037754
    DOI: 10.1371/journal.pone.0037754
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037754
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0037754&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0037754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    2. repec:cdl:uctcwp:qt5b76c5kg is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raturi, Varun & Hong, Jinhyun & McArthur, David Philip & Livingston, Mark, 2021. "The impact of privacy protection measures on the utility of crowdsourced cycling data," Journal of Transport Geography, Elsevier, vol. 92(C).
    2. Raja Jurdak, 2013. "The Impact of Cost and Network Topology on Urban Mobility: A Study of Public Bicycle Usage in 2 U.S. Cities," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
    3. Hu, Yujie & Zhang, Yongping & Lamb, David & Zhang, Mingming & Jia, Peng, 2019. "Examining and optimizing the BCycle bike-sharing system – A pilot study in Colorado, US," Applied Energy, Elsevier, vol. 247(C), pages 1-12.
    4. Zhang, Yongping & Lin, Diao & Liu, Xiaoyue Cathy, 2019. "Biking islands in cities: An analysis combining bike trajectory and percolation theory," Journal of Transport Geography, Elsevier, vol. 80(C).
    5. Situ, Xinyi, 2024. "From mobility to crime: Collective patterns of human mobility and gun violence in Baltimore City," Journal of Criminal Justice, Elsevier, vol. 94(C).
    6. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    7. Martin Zaltz Austwick & Oliver O’Brien & Emanuele Strano & Matheus Viana, 2013. "The Structure of Spatial Networks and Communities in Bicycle Sharing Systems," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
    8. O’Brien, Oliver & Cheshire, James & Batty, Michael, 2014. "Mining bicycle sharing data for generating insights into sustainable transport systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 262-273.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    2. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    3. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    4. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    5. Jaspe U Martínez-González & Alejandro P. Riascos & José L Mateos, 2024. "Pattern detection in the vehicular activity of bus rapid transit systems," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-18, October.
    6. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    7. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    8. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    9. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
    10. Vincenzo Auriemma & Luisa Nardi, 2025. "New models of sustainable mobility in Smart Cities," Academicus International Scientific Journal, Entrepreneurship Training Center Albania, issue 32, pages 84-101, July.
    11. Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
    12. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    13. Situ, Xinyi, 2024. "From mobility to crime: Collective patterns of human mobility and gun violence in Baltimore City," Journal of Criminal Justice, Elsevier, vol. 94(C).
    14. Yifeng Liu & Yuan Lai, 2024. "Analyzing jogging activity patterns and adaptation to public health regulation," Environment and Planning B, , vol. 51(3), pages 670-688, March.
    15. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    17. repec:osf:osfxxx:2ubzn_v1 is not listed on IDEAS
    18. repec:osf:osfxxx:gwumt_v1 is not listed on IDEAS
    19. Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
    20. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    21. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    22. Torsten Thalheim & Tyll Krüger & Jörg Galle, 2022. "Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness," IJERPH, MDPI, vol. 19(21), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0037754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.