IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0015961.html
   My bibliography  Save this article

Predicting Changes of Body Weight, Body Fat, Energy Expenditure and Metabolic Fuel Selection in C57BL/6 Mice

Author

Listed:
  • Juen Guo
  • Kevin D Hall

Abstract

The mouse is an important model organism for investigating the molecular mechanisms of body weight regulation, but a quantitative understanding of mouse energy metabolism remains lacking. Therefore, we created a mathematical model of mouse energy metabolism to predict dynamic changes of body weight, body fat, energy expenditure, and metabolic fuel selection. Based on the principle of energy balance, we constructed ordinary differential equations representing the dynamics of body fat mass (FM) and fat-free mass (FFM) as a function of dietary intake and energy expenditure (EE). The EE model included the cost of tissue deposition, physical activity, diet-induced thermogenesis, and the influence of FM and FFM on metabolic rate. The model was calibrated using previously published data and validated by comparing its predictions to measurements in five groups of male C57/BL6 mice (N = 30) provided ad libitum access to either chow or high fat diets for varying time periods. The mathematical model accurately predicted the observed body weight and FM changes. Physical activity was predicted to decrease immediately upon switching from the chow to the high fat diet and the model coefficients relating EE to FM and FFM agreed with previous independent estimates. Metabolic fuel selection was predicted to depend on a complex interplay between diet composition, the degree of energy imbalance, and body composition. This is the first validated mathematical model of mouse energy metabolism and it provides a quantitative framework for investigating energy balance relationships in mouse models of obesity and diabetes.

Suggested Citation

  • Juen Guo & Kevin D Hall, 2011. "Predicting Changes of Body Weight, Body Fat, Energy Expenditure and Metabolic Fuel Selection in C57BL/6 Mice," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-9, January.
  • Handle: RePEc:plo:pone00:0015961
    DOI: 10.1371/journal.pone.0015961
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015961
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0015961&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0015961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin D Hall & Juen Guo & Michael Dore & Carson C Chow, 2009. "The Progressive Increase of Food Waste in America and Its Environmental Impact," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorward, Leejiah J., 2012. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment," Food Policy, Elsevier, vol. 37(4), pages 463-466.
    2. Parks, Joanna, 2013. "The Effects of Food Labeling and Dietary Guidance on Nutrition in the United States," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150583, Agricultural and Applied Economics Association.
    3. Johnson, Lisa K. & Dunning, Rebecca D. & Gunter, Chris C. & Dara Bloom, J. & Boyette, Michael D. & Creamer, Nancy G., 2018. "Field measurement in vegetable crops indicates need for reevaluation of on-farm food loss estimates in North America," Agricultural Systems, Elsevier, vol. 167(C), pages 136-142.
    4. Caleb Phillips & Rhonda Hoenigman & Becky Higbee & Tom Reed, 2013. "Understanding the Sustainability of Retail Food Recovery," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    5. Bianca Cezara Archip & Ioan Banatean-Dunea & Dacinia Crina Petrescu & Ruxandra Malina Petrescu-Mag, 2023. "Determinants of Food Waste in Cluj-Napoca (Romania): A Community-Based System Dynamics Approach," IJERPH, MDPI, vol. 20(3), pages 1-22, January.
    6. Venkat, Kumar, 2012. "The Climate Change and Economic Impacts of Food Waste in the United States," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 2(4), pages 1-16, April.
    7. Zulfiya E. Bayazitova & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero & Aigul S. Kurmanbayeva & Natalya M. Safronova & Anargul S. Belgibayeva & Sayagul B. Zhaparova & Gulim E. Baikenova & Anuarb, 2022. "Relevance of Environmental Surveys on the Design of a New Municipal Waste Management System on the City of Kokshetau (Kazakhstan)," Sustainability, MDPI, vol. 14(21), pages 1-15, November.
    8. Felipe Vásquez & Gibran Vita & Daniel B. Müller, 2018. "Food Security for an Aging and Heavier Population," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    9. Piergiuseppe Morone & Pasquale Marcello Falcone & Enrica Imbert & Marcello Morone & Andrea Morone, 2016. "New consumers behaviours in the sharing economy: An experimental analysis on food waste reduction," Working Papers 2016/11, Economics Department, Universitat Jaume I, Castellón (Spain).
    10. Zarko Kalamov, 2020. "A sales tax is better at promoting healthy diets than the fat tax and the thin subsidy," Health Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 353-366, March.
    11. Thyberg, Krista L. & Tonjes, David J., 2016. "Drivers of food waste and their implications for sustainable policy development," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 110-123.
    12. Massimiliano Cerciello, 2021. "Spatial patterns in food waste at the local level. A preliminary analysis for Italian data," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 83-101, February.
    13. Rachel Soloveichik, 2019. "Accounting for Improved Brick and Mortar Shopping Experiences," BEA Working Papers 0165, Bureau of Economic Analysis.
    14. Jara Laso & Cristina Campos & Ana Fernández-Ríos & Daniel Hoehn & Andrea del Río & Israel Ruiz-Salmón & Jorge Cristobal & Ainoa Quiñones & Francisco José Amo-Setién & María del Carmen Ortego & Sergio , 2020. "Looking for Answers to Food Loss and Waste Management in Spain from a Holistic Nutritional and Economic Approach," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    15. Edward S. Spang & Bret D. Stevens, 2018. "Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of U.S. Potato Cultivation," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    16. Shelly Palmer & Jessica Jarick Metcalfe & Brenna Ellison & Toni Kay Wright & Lindsey Sadler & Katherine Hinojosa & Jennifer McCaffrey & Melissa Pflugh Prescott, 2021. "The Efficacy and Cost-Effectiveness of Replacing Whole Apples with Sliced in the National School Lunch Program," IJERPH, MDPI, vol. 18(24), pages 1-7, December.
    17. Vera Amicarelli & Christian Bux, 2021. "Food waste in Italian households during the Covid-19 pandemic: a self-reporting approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(1), pages 25-37, February.
    18. Willersinn, Christian & Mack, Gabriele & Siegrist, Michael & Mouron, Patrik, 2015. "Potato food waste in Swiss households - quantity, driving factors and waste behavior of consumers," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202725, European Association of Agricultural Economists.
    19. Lopez Barrera, Emiliano & Hertel, Thomas, 2021. "Global food waste across the income spectrum: Implications for food prices, production and resource use," Food Policy, Elsevier, vol. 98(C).
    20. Ujor, Victor & Bharathidasan, Ashok Kumar & Cornish, Katrina & Ezeji, Thaddeus Chukwuemeka, 2014. "Feasibility of producing butanol from industrial starchy food wastes," Applied Energy, Elsevier, vol. 136(C), pages 590-598.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0015961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.