IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0006899.html
   My bibliography  Save this article

Beyond Element-Wise Interactions: Identifying Complex Interactions in Biological Processes

Author

Listed:
  • Christophe Ladroue
  • Shuixia Guo
  • Keith Kendrick
  • Jianfeng Feng

Abstract

Background: Biological processes typically involve the interactions of a number of elements (genes, cells) acting on each others. Such processes are often modelled as networks whose nodes are the elements in question and edges pairwise relations between them (transcription, inhibition). But more often than not, elements actually work cooperatively or competitively to achieve a task. Or an element can act on the interaction between two others, as in the case of an enzyme controlling a reaction rate. We call “complex” these types of interaction and propose ways to identify them from time-series observations. Methodology: We use Granger Causality, a measure of the interaction between two signals, to characterize the influence of an enzyme on a reaction rate. We extend its traditional formulation to the case of multi-dimensional signals in order to capture group interactions, and not only element interactions. Our method is extensively tested on simulated data and applied to three biological datasets: microarray data of the Saccharomyces cerevisiae yeast, local field potential recordings of two brain areas and a metabolic reaction. Conclusions: Our results demonstrate that complex Granger causality can reveal new types of relation between signals and is particularly suited to biological data. Our approach raises some fundamental issues of the systems biology approach since finding all complex causalities (interactions) is an NP hard problem.

Suggested Citation

  • Christophe Ladroue & Shuixia Guo & Keith Kendrick & Jianfeng Feng, 2009. "Beyond Element-Wise Interactions: Identifying Complex Interactions in Biological Processes," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0006899
    DOI: 10.1371/journal.pone.0006899
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006899
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006899&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0006899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    2. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    3. Shuixia Guo & Jianhua Wu & Mingzhou Ding & Jianfeng Feng, 2008. "Uncovering Interactions in the Frequency Domain," PLOS Computational Biology, Public Library of Science, vol. 4(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cleiton Guollo Taufemback, 2023. "Non‐parametric short‐ and long‐run Granger causality testing in the frequency domain," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 69-92, January.
    2. repec:jss:jstsof:44:i13 is not listed on IDEAS
    3. Pradhan, Ashis Kumar & Mishra, Bibhuti Ranjan & Tiwari, Aviral Kumar & Hammoudeh, Shawkat, 2020. "Macroeconomic factors and frequency domain causality between Gold and Silver returns in India," Resources Policy, Elsevier, vol. 68(C).
    4. Tian Ge & Keith M Kendrick & Jianfeng Feng, 2009. "A Novel Extended Granger Causal Model Approach Demonstrates Brain Hemispheric Differences during Face Recognition Learning," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-13, November.
    5. Federico Malizia & Alessandra Corso & Lucia Valentina Gambuzza & Giovanni Russo & Vito Latora & Mattia Frasca, 2024. "Reconstructing higher-order interactions in coupled dynamical systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
    2. Fali Huang & Myoung-Jae Lee, 2010. "Dynamic treatment effect analysis of TV effects on child cognitive development," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(3), pages 392-419.
    3. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    4. Jose Perez-Montiel & Carles Manera Erbina, 2019. "Investment Sustained by Consumption: A Linear and Nonlinear Time Series Analysis," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    5. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    6. Tomaso Aste, 2019. "Cryptocurrency market structure: connecting emotions and economics," Digital Finance, Springer, vol. 1(1), pages 5-21, November.
    7. Zapata, Hector O. & Gil, Jose M., 1999. "Cointegration and causality in international agricultural economics research," Agricultural Economics, Blackwell, vol. 20(1), pages 1-9, January.
    8. Claude Diebolt & Cédric Doliger, 2005. "Becker vs. Easterlin. Education, Fertility and Growth in France after World War II," Working Papers 05-03, Association Française de Cliométrie (AFC).
    9. Wang, Gang-Jin & Xie, Chi & Jiang, Zhi-Qiang & Stanley, H. Eugene, 2016. "Extreme risk spillover effects in world gold markets and the global financial crisis," International Review of Economics & Finance, Elsevier, vol. 46(C), pages 55-77.
    10. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    11. Dean Fantazzini, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    12. Jonathan B. Hill, 2005. "Causation Delays and Causal Neutralization up to Three Steps Ahead: The Money-Output Relationship Revisited," Econometrics 0503016, University Library of Munich, Germany, revised 23 Mar 2005.
    13. Ahmed Ali & Granberg Mark & Troster Victor & Uddin Gazi Salah, 2022. "Asymmetric dynamics between uncertainty and unemployment flows in the United States," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 155-172, February.
    14. Lukasz Marc, 2014. "The Causal Links between Aid and Government Expenditures," Tinbergen Institute Discussion Papers 14-012/V, Tinbergen Institute.
    15. Khan, Urmee & Lieli, Robert P., 2018. "Information flow between prediction markets, polls and media: Evidence from the 2008 presidential primaries," International Journal of Forecasting, Elsevier, vol. 34(4), pages 696-710.
    16. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).
    17. Tiwari, Aviral Kumar & Dar, Arif Billah & Bhanja, Niyati, 2013. "Oil price and exchange rates: A wavelet based analysis for India," Economic Modelling, Elsevier, vol. 31(C), pages 414-422.
    18. Cheung, Yin-Wong & Ng, Lilian K., 1996. "A causality-in-variance test and its application to financial market prices," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 33-48.
    19. Danau, Daniel, 2020. "Prudence and preference for flexibility gain," European Journal of Operational Research, Elsevier, vol. 287(2), pages 776-785.
    20. Bathia, Deven & Demirer, Riza & Gupta, Rangan & Kotzé, Kevin, 2021. "Unemployment fluctuations and currency returns in the United Kingdom: Evidence from over one and a half century of data," Journal of Multinational Financial Management, Elsevier, vol. 61(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0006899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.