IDEAS home Printed from https://ideas.repec.org/a/plo/pdig00/0000084.html
   My bibliography  Save this article

Application of ARIMA, and hybrid ARIMA Models in predicting and forecasting tuberculosis incidences among children in Homa Bay and Turkana Counties, Kenya

Author

Listed:
  • Stephen Siamba
  • Argwings Otieno
  • Julius Koech

Abstract

Tuberculosis (TB) infections among children (below 15 years) is a growing concern, particularly in resource-limited settings. However, the TB burden among children is relatively unknown in Kenya where two-thirds of estimated TB cases are undiagnosed annually. Very few studies have used Autoregressive Integrated Moving Average (ARIMA), and hybrid ARIMA models to model infectious diseases globally. We applied ARIMA, and hybrid ARIMA models to predict and forecast TB incidences among children in Homa Bay and Turkana Counties in Kenya. The ARIMA, and hybrid models were used to predict and forecast monthly TB cases reported in the Treatment Information from Basic Unit (TIBU) system by health facilities in Homa Bay and Turkana Counties between 2012 and 2021. The best parsimonious ARIMA model that minimizes errors was selected based on a rolling window cross-validation procedure. The hybrid ARIMA-ANN model produced better predictive and forecast accuracy compared to the Seasonal ARIMA (0,0,1,1,0,1,12) model. Furthermore, using the Diebold-Mariano (DM) test, the predictive accuracy of ARIMA-ANN versus ARIMA (0,0,1,1,0,1,12) model were significantly different, p

Suggested Citation

  • Stephen Siamba & Argwings Otieno & Julius Koech, 2023. "Application of ARIMA, and hybrid ARIMA Models in predicting and forecasting tuberculosis incidences among children in Homa Bay and Turkana Counties, Kenya," PLOS Digital Health, Public Library of Science, vol. 2(2), pages 1-19, February.
  • Handle: RePEc:plo:pdig00:0000084
    DOI: 10.1371/journal.pdig.0000084
    as

    Download full text from publisher

    File URL: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000084
    Download Restriction: no

    File URL: https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000084&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pdig.0000084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    2. Rob J. Hyndman & Andrey V. Kostenko, 2007. "Minimum Sample Size requirements for Seasonal Forecasting Models," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 6, pages 12-15, Spring.
    3. Tanujit Chakraborty & Ashis Kumar Chakraborty & Munmun Biswas & Sayak Banerjee & Shramana Bhattacharya, 2021. "Unemployment Rate Forecasting: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 183-201, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiří Šindelář, 2019. "Sales forecasting in financial distribution: a comparison of quantitative forecasting methods," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(3), pages 69-80, December.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. repec:jss:jstsof:27:i03 is not listed on IDEAS
    4. Jussim, Maxim, 2014. "Entwicklung eines Simulationstools zur Analyse von Prognose- und Dispositionsentscheidungen im Krankenhausbereich," Bayreuth Reports on Information Systems Management 57, University of Bayreuth, Chair of Information Systems Management.
    5. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    6. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    7. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    9. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    10. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    11. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    12. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    13. I. Yu. Zolotova & V. V. Dvorkin, 2017. "Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks," Studies on Russian Economic Development, Springer, vol. 28(6), pages 608-615, November.
    14. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    15. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    16. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    17. Mahadee Al Mobin & Md Kamrujjaman, 2023. "Downscaling epidemiological time series data for improving forecasting accuracy: An algorithmic approach," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-33, December.
    18. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    19. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    20. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    21. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    22. Goldsworthy, M. & Moore, T. & Peristy, M. & Grimeland, M., 2022. "Cloud-based model-predictive-control of a battery storage system at a commercial site," Applied Energy, Elsevier, vol. 327(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.